
#8: Fundamentals of Trigonometry
October 30, 2008

The word “trigonometry” literally means “triangle measurement”: histori-
cally, trigonometry is indeed rooted in the study of triangles, and you prob-
ably remember seeing a bit of it in geometry class. However, since ancient
Greece it has come to have much wider scope and connections to many other
areas of mathematics.

1 Radians

Have you ever wondered exactly why we use degrees to measure angles?
Degrees are pretty arbitrary, when you stop to think about it. Why are
there three hundred sixty degrees in a full circle? Why not five hundred,
or one hundred? Or why not just say “1/4 of a revolution” instead of “90
degrees”?

As best we can tell, the practice of using degrees to measure angles comes to
us from the ancint Babylonians, via the ancient Greeks. The Babylonians
were avid astronomers, and noticed that the stars seemed to rotate about
1/360 of a full rotation from night to night, so decided to use that as the
basis for measuring angles and rotations. It probably also helped that 360
has many divisors, so it was easy to work with various fractions of 360.

Problem 1. How many different positive divisors (including 1 and 360
itself) does 360 have? List them. For example, 12 has 6 divisors: 1, 2, 3, 4,
6, and 12.

So, the fact that there are 360 degrees in a circle actually comes from the
fact that there are (about) 360 days in a year.

Well, that’s nice, but it’s still rather arbitrary, and a bit too concrete for our
abstract modern tastes. Can you imagine if I told you that from now on,
we will use a picture of two hands holding apples instead of the + symbol,
because when we add things it is like putting two apples together? Well,
that’s essentially what the system of degrees is like, if you think about it:
we are basing our definition on some arbitrarily chosen aspect of the real
world, rather than using a more elegant, abstract definition.
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So, what’s a less arbitrary way to measure angles? Well, here’s an idea:
if we think of an angle as a sector of a unit circle (by a “unit circle” I
mean a circle with a radius of 1), we can measure the angle by the length
of the circular arc that it corresponds to. In other words, to see how many
radians a certain angle corresponds to, draw the angle on a circle of radius 1,
and measure the part of the circle’s circumference which is inside the angle.
Figure 1 illustrates this idea.

Figure 1: Measuring angles by distance on a unit circle.

So, in the picture, we represent angle α (which could be any angle) by the
length of the bold arc; the 1 reminds us that we are using a unit circle (a
circle with radius 1). These new units for measuring angles are known as
radians.1

Problem 2. What is the circumference of a unit circle?

Problem 3. How many radians does 360◦ correspond to? Give your answer
in exact form.

Problem 4. Convert from degrees to radians. Leave your answers in exact
form.

(a) 180◦

(b) 90◦

(c) 60◦

(d) 45◦

(e) 30◦

1Don’t ask, I have no idea why.
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Problem 5. Convert from radians to degrees.

(a) 4π

(b) π/7

Problem 6. In general, what is the formula for converting from degrees to
radians? From radians to degrees?

2 Angles

We say that an angle is in standard position if its vertex is at the origin,
and it is measured counterclockwise from the x-axis. Since angles can be in
any position and orientation and still be the same angle, it simplifies things
if we always assume angles are in standard position. As you may recall
from geometry, an angle is formed from two rays with a common vertex; so
another way to describe an angle in standard position is any angle which has
the positive x-axis as one of its rays. The other ray is called the terminal
ray. Figure 2 shows an angle in standard position.

Figure 2: An angle θ in standard position.

Unlike what you may have learned in geometry, from now on it is perfectly
acceptable to have angles bigger than 2π radians, or even negative angles.
Angles bigger than 2π radians correspond to going around the circle multi-
ple times; negative angles are measured clockwise starting from the x-axis.
Figure 3 shows some examples. The red angle is a negative angle; the blue
angle is larger than 2π radians.
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Figure 3: Some example angles.

If two angles “end up” in the same place on a circle, we say the angles are
coterminal, since their terminal rays coincide. For example, the three angles
shown in Figure 4 are all coterminal. Even though they are different angles,
in some sense they are all equivalent.

Problem 7. For each angle, find another angle α ∈ [0, 2π) which is coter-
minal with the given angle.

(a) 3π

(b) 95π/6

(c) −3π/2

3 Sine and cosine

The sine and cosine functions are fascinating and foundational—they show
up all over the place in many different areas of mathematics, often when you
least expect them! They also have many interesting properties that make
them fun to play with in their own right.
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Figure 4: Three coterminal angles.

3.1 Sine and cosine in right triangles

You have probably already learned about sine and cosine in the context of
right triangles. If θ is one of the angles in a right triangle (other than the
right angle itself), then sin θ = opposite

hypotenuse , that is, the ratio between the
length of the opposite leg of the triangle and the length of the hypotenuse.2

Likewise, cos θ = adjacent
hypotenuse , the ratio betwen the lengths of the adjacent leg

and the hypotenuse. See Figure 5.

You also may have seen the mnemonic device “SOHCAHTOA” to help you
remember these definitions: Sine is Opposite over Hypotenuse, Cosine is
Adjacent over Hypotenuse (and Tangent is Opposite over Adjacent).

These right-triangle based definitions are important in several ways:

1. They represent the historical roots of the sine and cosine functions.
This is how sine and cosine were first defined.

2. They are useful in applying the tools of trigonometry to real-world
problems involving right triangles.

3. They provide useful intuition when dealing with generalized definitions
of sine and cosine.

2Even though we abbreviate the sine function as sin, you should still pronounce it
“sine”. The same goes for cosine.
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Figure 5: Sine and cosine for a right triangle

Problem 8. What is sinπ/4? Hint: draw an appropriate triangle.

Problem 9. Triangle ABC is a right triangle with B as the right angle.
Side AB is 8 units long, and side BC is 3 units long. What is cosA? As
always, give your answer in exact form.

As hinted previously, the right triangle definitions of sine and cosine are not
general enough. In particular, they only define sine and cosine for angles
between 0 and π/2; we would like a definition of sine and cosine that works
for any angle.

3.2 General definitions

Suppose we have some angle θ. Let’s draw θ in standard position, on top of
a unit circle.

The terminal ray of θ intersects the unit circle at some point; suppose that
point has coordinates (x, y), as shown in Figure 6. Then we define

cos θ = x (1)

and

sin θ = y. (2)

What could be simpler? Notice that this definition works for any angle: we
just draw the angle in standard position, see where its terminal ray intersects
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Figure 6: Defining sine and cosine for any angle θ

the unit circle, and pick the x or y coordinate depending on whether we want
the cosine or sine.

Problem 10. Invent a silly mnemonic to help you remember that cosine
goes with x, and sine goes with y.

Problem 11. Evaluate.

(a) sinπ

(b) cos(π/2)

(c) sin(3π/2)

(d) cosπ

(e) sin(99π)

(f) sin(13π/4)

Problem 12. I claimed that the new definitions of sine and cosine are
more general than the old right-triangle definitions—so they had better be
the same for angles between 0 and π/2! You don’t have to take my word for
it. Let’s see why they are the same.

Start by drawing a picture like Figure 6 for an angle θ between 0 and π/2.
(You don’t have to actually turn in the drawing; making the drawing will
help you answer the following questions.) Call the point where θ’s terminal
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ray intersects the unit circle P . As in Figure 6, suppose the coordinates of
P are (x, y).

(a) What is the distance between the origin and P? Why?

(b) Draw a vertical segment from P to the x-axis, and call the point
where it intersects the x-axis Q. What is the length of segment PQ?

(c) What is the distance from the origin to Q?

(d) What is sin θ according to the right triangle definition? Why?

(e) What is sin θ according to the more general definition? Why?

(f) Is cos θ the same for the two definitions as well? Why or why not?

4 LATEX Hints

Here are some LATEX hints for this assignment:

• You can make a degree symbol with a superscript \circ. For example,
360^\circ produces 360◦.

• You can use the \pi command to make a π. In fact, you can make any
Greek letter by using the command with the same name; use uppercase
commands for uppercase versions of Greek letters (for example, \gamma
makes a lowercase gamma, while \Gamma makes an uppercase one).
Table 1 on page 9 lists all the Greek letters.

If there is a dash (—) in the uppercase column, it means there is no
command for an uppercase version of that Greek letter, since it looks
exactly like an uppercase Roman letter. For example, uppercase alpha
just looks like A, so there is no need for a separate command. There
is no \omicron command (omicron comes between xi and pi in the
Greek alphabet) since it looks exactly like a lowercase o.

Note that if you want to express summation or product notation, you
should use \sum or \prod, not \Sigma or \Pi.

• Whenever you write the sine or cosine functions in an equation, you
should use the special commands \sin and \cos. If you just write sin
or cos (without the backslash), LATEX will think you mean s times i
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Name Lowercase Uppercase
\alpha α —
\beta β —
\gamma γ Γ
\delta δ ∆
\epsilon ε —
\zeta ζ —
\eta η —
\theta θ Θ
\iota ι —
\kappa κ —
\lambda λ Λ
\mu µ —
\nu ν —
\xi ξ Ξ
\pi π Π
\rho ρ —
\sigma σ Σ
\tau τ —
\upsilon υ Υ
\phi φ Φ
\chi χ —
\psi ψ Ψ
\omega ω Ω

Table 1: Greek letters
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times n, or c times o times s, and typeset them in italics with no space
afterwards. See the difference?

Wrong: sinθ + cosθ Right: sin θ + cos θ
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