
#18: Matrices
February 7, 2009

The complex numbers you learned about in previous weeks are a particular
generalization of the concept of “number;” so, too, are matrices. You can
think of a matrix as a sort of “multi-dimensional number.”

Now, why might this be useful? Matrices, as it turns out, have a ton of
applications; we’ll look at a few next week. For example, matrices can be
used to represent certain sorts of transformations in two or three dimensions,
so they are used extensively in computer graphics. (In fact, it turns out that
the graphics card inside your computer is essentially just a glorified piece of
hardware for doing lots of matrix multiplications, very quickly, in parallel!)
Matrices can also be used to represent systems of linear equations, or sets
of transition probabilities in multi-state systems, or pretty much anything
having to do with sets of data having multiple dimensions.

Before we get there, however, we’ll spend this week learning some matrix
basics.

Be sure to look at the LATEX notes in the last section of this assignment for
some tips on typing up your solutions!

1 The basics

matrix
A matrix is a rectangular array of numbers. We say that
a matrix M is an m×n matrix when it has m rows and n
columns, and call m and n the dimensions of M .

For example, this is a 2 × 3 matrix:

A =

(

2 3 5
4 1 −9

)

(1)

A matrix is square if it has the same number of rows and columns.

Repeat this phrase to yourself: “row, column.” We always refer to the rowsrow, column

of a matrix first, and the columns second. (This is completely arbitrary, of
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course. It could have been the other way around.1) This applies to matrix
dimensions (the dimensions m × n mean m rows and n columns) and also,
as you will see, to remembering how matrix multiplication works.

We can use subscript notation to refer to particular entries in a matrix: thesubscript notation

notation Mij refers to the entry of matrix M in row i and column j.

Problem 1. Let A be the matrix in equation (1). What is A13?

transpose

The transpose of a matrix M , denoted MT , is the matrix
M with the rows and columns switched. That is, (MT )ij =
Mji.

You can think of the transpose as flipping the matrix along a diagonal line
going from the top left to bottom right. For example,

AT =





2 4
3 1
5 −9



 .

2 Matrix arithmetic

That’s right, we can do arithmetic with matrices—in other words, we canmatrices as

generalized numbers treat them as a particular kind of “generalized number.” Why might we
want to do this? There are many good reasons, some of which you’ll see
later on in the assignment. For now, let’s see how matrix arithmetic works.

2.1 Matrix addition

Matrix addition is very simple, and works in exactly the way you mighteasy peasy

guess. We can only add two matrices with the same dimensions; but assum-
ing we do have two matrices A and B with the same dimensions, we can
add them simply by adding corresponding entries. For example,

(

2 3
4 −1

)

+

(

5 0
−6 3

)

=

(

2 + 5 3 + 0
4 − 6 −1 + 3

)

=

(

7 3
−2 2

)

1But it isn’t.
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Problem 2. Suppose we have the following matrices:

A =

(

2 3 5
4 1 −9

)

B =





4 6
2 1
0 0



 C =

(

1 1/2 1/3
1/2 1/3 1/4

)

Evaluate each of the following.

(a) A + C

(b) B + C

(c) B + AT

(d) A + BT + C

Problem 3. For two matrices X and Y , is X+Y always the same as Y +X?
Explain why, or give a counterexample.

2.2 Matrix multiplication

Multiplying two matrices, on the other hand, is not quite as straightforward
as addition!

To multiply two matrices, the number of columns of the first matrix mustsay what?

be the same as the number of rows of the second matrix. Let’s say that we
have two matrices, X, which is m × k, and Y , which is k × n. Then their
product, denoted XY , will be an m × n matrix. Here is how to determine
the elements of the matrix product XY : to get (XY )ij (the entry in the
ith row and jth column), take the ith row of X and the jth column of Y ,
multiply their corresponding elements, and add the results.

Now, maybe you are confused by that description; I wouldn’t blame you.
But it’s really not so bad once you get the hang of it; let’s go through an
example.

Suppose we have the matricesmatrix

multiplication

example
X =

(

1 2 3
4 5 6

)

Y =





0 −2 1 9
5 4 2 6
1 −3 0 −1



 .

X has dimensions 2 × 3, and Y has dimensions 3 × 4. Since the number of
columns of X (3) equals the number of rows of Y (also 3), we can multiply
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them, and the result will be a 2 × 4 matrix. Think to yourself: “2 × 3 and
3 × 4—the 3’s match up, so they disappear, leaving 2 × 4.”

Now, to determine the entry in the first row and first column of the product
XY , we look at the first row of X and the first column of Y , here shown
highlighted in blue and red:

X =

(

1 2 3
4 5 6

)

Y =





0 −2 1 9
5 4 2 6
1 −3 0 −1



 .

We now take these two lists of three numbers, multiply them element-by-
element, and add the results:

1 · 0 + 2 · 5 + 3 · 1 = 0 + 10 + 3 = 13.

So far, we know that the matrix product XY looks like this:

XY =

(

13 ? ? ?
? ? ? ?

)

Now let’s compute (XY )12 (highlighted in red above). Since we are trying
to compute the entry of XY in the first row and second column, we take
the first row of X, and the second column of Y :

X =

(

1 2 3
4 5 6

)

Y =





0 −2 1 9
5 4 2 6
1 −3 0 −1



 .

Multiplying them pairwise and then adding yields

1 · −2 + 2 · 4 + 3 · −3 = −2 + 8 + −9 = −3.

Now XY looks like

XY =

(

13 −3 ? ?
? ? ? ?

)

.

Getting the hang of it?

Problem 4. Go back and read the paragraph at the beginning of section 2.2.
Does it make sense now?

Problem 5. Finish computing the matrix product XY . (You don’t have
to show all the work, just the final answer.)
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Problem 6. Use the matrices A, B, and C defined in Problem 2, and also

D =

(

2 4
−1 1

)

E =

(

1 3
2 2

)

.

Compute each of the following:

(a) AB

(b) AC

(c) BD

(d) DE

(e) ED

Problem 7. Suppose X and Y are square matrices. Is XY always the same
as Y X? Explain why, or give a counterexample.

What you found in Problem 7—that matrix multiplication is not commuta-matrix

multiplication is not

commutative

tive—is one of the biggest ways that matrices are different from any other
sort of “number.” With real numbers, you are used to being able to switch
around the order of things being multiplied, but you have to be very careful:
you cannot do this with matrices!

It turns out, however, that matrix multiplication is associative: for anymatrix

multiplication is

associative

matrices X, Y , and Z, as long as they have dimensions that match up
properly, it is always true that (XY )Z = X(Y Z). That is, when doing
more than one matrix multiplication, it doesn’t matter which multiplication
we do first, as long as we keep them in the right order. This means that we
can write things like ABCDE instead of ((AB)C)(DE) or A(B(C(DE)))
or ((AB)(CD))E since they are all the same.

Problem 8. Can you find a 2 × 2 matrix I, which when multiplied by any
other 2 × 2 matrix X, yields X? That is, IX = X for any 2 × 2 matrix X.
I is called the 2 × 2 identity matrix (sometimes also written I2).

Problem 9. What is the 3 × 3 identity matrix, I3? In general, what does
the n × n identity matrix In look like?

Problem 10. There is no such thing as a 2× 3 identity matrix. Why not?
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3 Inverses and the determinant

Problem 11. Multiply the following two matrices:

A =

(

2 3
3 5

)

B =

(

5 −3
−3 2

)

What do you get? Why is this interesting?

inverse
The inverse of a square matrix A, written A−1, is a matrix
which when multiplied by A results in the identity matrix:
AA−1 = A−1A = I.

Problem 12. As it turns out, not all matrices have an inverse. But this
should not be too surprising—why not? (Hint: think about the real num-
bers.)

Matrices which have an inverse are called invertible, and matrices which dosolving matrix

equations not have an inverse are called singular. Why do we care whether a matrix is
invertible? Well, remember what you do in algebra to solve an equation like
3x = 12: you multiply both sides by 1/3, the inverse of 3. In the same way,
inverting matrices allows us to solve matrix equations like AX = Y (where
A, X, and Y are all matrices)—if A is invertible, we can multiply both sides
of the equation by A−1 to get X = A−1Y .

So, we would like a way to be able to tell whether a matrix has an inverse,
and, if it does, to be able to compute it. Interestingly, both of these require
something called the determinant.

determinant
The determinant of a matrix M , denoted det M , is a num-
ber computed from M in a particular way (to be described
later), which has the special property that M is invertible
if and only if detM 6= 0.

That is, to check whether a matrix M has an inverse, just compute its
determinant—if the determinant is zero, M is singular (that is, not invert-
ible); it the determinant is anything other than zero, M is invertible. Nifty,
huh? Oh, except I haven’t told you how to compute the determinant yet!
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This week, I’ll only show you how to compute the determinant of a 2 × 22 × 2 determinant

matrix.2 Suppose we have the matrix

X =

(

a b
c d

)

.

Then the determinant of X (which we can abbreviate using vertical bars
instead of parentheses around the matrix elements) can be computed by

det X =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − bc.

Problem 13. What is the determinant of matrix A from Problem 11?

Problem 14. Write down a 2 × 2 matrix with determinant 5.

Now let’s see how to compute the inverse of a 2 × 2 matrix. If2 × 2 inverses

A =

(

a b
c d

)

,

then

A−1 =
1

detA

(

d −b
−c a

)

.

Problem 15. For each of the following matrices, compute its inverse, or
state that it has none.

(a)

(

2 3
3 5

)

(b)

(

1 1
1 1

)

(c)

(

5 7
2 −3

)

(d)

(

3 0
0 3

)

(e)

(

cos θ − sin θ
sin θ cos θ

)

(Hint: remember the Pythagorean Identity! )

Problem 16. Solve this matrix equation for X:
(

1 2
3 4

)

X =

(

7
−2

)

.

2If you’re extra good, next week I might show you how to compute the determinants

of larger ones. . .
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4 LATEX notes

• To typeset the size of a matrix (for example, “m×n”), you should write
something like $m \times n$; do not just write an ‘x’, like $m x n$.
Do these look the same to you: m × n, mxn? I didn’t think so.

• You can typeset a matrix using the pmatrix environment. Elements
within a row are separated by &; rows are separated by \\. For exam-
ple, you could typeset the following matrix:





4 5 x + 2
9 0 π

6 + 5i
√

3 −2





with this code:

\[

\begin{pmatrix}

4 & 5 & x + 2 \\

9 & 0 & \pi \\

6 + 5i & \sqrt{3} & -2

\end{pmatrix}

\]

To get a matrix with vertical bars instead of parentheses, you can use
vmatrix instead of pmatrix. (There is also bmatrix to make a matrix
with square brackets, but you won’t need that.)

• When using matrix subscript notation, remember to use curly braces
around the subscripts; otherwise, only the first digit will be included
in the subscript. For example, M_12 is wrong, since it produces this
output: M12. Correct would be M_{12}, which produces M12.

• When typesetting the determinant operator, you should use the spe-
cial LATEX command \det instead of just writing det (just like you
use \cos instead of cos). See the difference: det M (correct), detM
(incorrect).

• If anything is still not clear, take a look at the LATEX source for this
assignment!
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