
#31: Graph Theory II
May 30, 2009

Last week, you learned the basic definition of a graph. But there are sev-
eral ways that this basic definition can be usefully generalized in order to
model various sorts of structures. This week we’ll look at several of these
generalizations.

1 Weighted graphs and minimum spanning trees

A weighted, or labelled graph is one where each edge has some kind of weightweighted graphs
or label associated with it. This is useful when you want to represent not
only the fact that things are connected in certain ways, but that there is
some sort of cost, length, capacity, or other sort of measurement associated
with each connection. Let’s look at an example.

It is the year 2055. Humans have established several colonies on Mars.oooooOOOOOooo
Figure 1 shows a graph representing the colonies (labeled a through h) and
the roads between them. (There used to be a road between b and c, but as
you can see it has been taken over by Martians.)

Problem 1. Is it possible to walk along every road exactly once without
retracing your steps or walking along the same road twice? If not, can you
do it if you leave out one road? If you leave out two roads?

Problem 2. Is it possible to walk along the roads in such a way that you
visit every colony exactly once?

The humans decide to link some of the colonies with special high-speedzoom!
trains, which need to be built along existing roads. However, high-speed
trains are really expensive. The number next to each road shows the cost of
turning that road into a high-speed train (in zillions of zlqrts, the currency
used by the colonists).

Problem 3. Suppose the colonists want to link a and f with high-speed
trains. Which roads should be turned into trains to link a and f at minimum
cost? What is the minimum cost?

1 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Figure 1: Mars colonies, with the cost of turning each road into a high-speed
train

As it turns out, the humans decide they want to link all the colonies with
high-speed trains; that is, it should be possible to get from any colony to
any other just by riding trains. However, building a high-speed train along
every road would cost too much money, not to mention that it would be
unnecessary. For example, there would be no need to build a high-speed
train from, say, a to d if there were already high-speed trains from a to c
and c to d: anyone wanting to get from a to d could first take the train to
c and from there to d.

So, the problem is this: which roads should be turned into trains so thatminimum spanning
trees all the colonies are connected for the least total amount of money? Such a

subset of edges in a weighted graph which connects all the vertices and has
minimum total weight is called a minimum spanning tree.

It turns out that there is a simple algorithm for finding minimum spanningKruskal’s algorithm
trees in a weighted graph, called Kruskal’s algorithm. It works by building
up the minimal spanning tree one edge at a time:

• Look at the edges in order of weight, from smallest to largest.

• For each edge, if it would form a cycle with other edges already in the
minimum spanning tree, throw it out. Otherwise, add it to the tree.

Let’s see how this works, using Figure 1 as an example. First, we look at
the edge with the smallest weight, which is the edge from g to h (weight

2 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



2). It doesn’t make a cycle with any of the edges already in the minimum
spanning tree (there aren’t any other edges in the minimum spanning tree
yet!) so we add it to the minimum spanning tree, which I’ve indicated in
Figure 2 by coloring it red.

Figure 2: The first step of Kruskal’s algorithm. The minimum spanning tree
so far is colored red.

Now we look at the edge with the next smallest weight, which is the edge
from g to f with weight 4. Again, there are no cycles in sight yet, so we add
it to the minimum spanning tree (Figure 3).

The next smallest edge is the one from f to h, with weight 5. (Actually, there
are two edges with weight 5; we are free to consider them in either order we
like.) However, edges fg and gh are already in the minimum spanning tree,
so adding fh would create the cycle fgh. We don’t need to build a train
from f to h if there are already trains from f to g and g to h! So we throw
away edge fh (shown in Figure 4 by drawing it with a dotted line).

I’ll show one more step: the next smallest edge is ac; it wouldn’t form any
cycles, so we add it (Figure 5).

Problem 4. Complete Kruskal’s algorithm for the given graph. Which
other roads should be turned into high-speed trains? What is the total
(minimum) cost of connecting all the colonies with trains?

Problem 5. It turns out that the Martians are actually friendly, and offerthe claw has
chosen! to help build a high-speed train from b to c. With the aliens’ help, this

3 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Figure 3: The second step of Kruskal’s algorithm

Figure 4: The third step of Kruskal’s algorithm

4 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Figure 5: The fourth step of Kruskal’s algorithm

would only cost one zillion zlqrts. How does the minimum spanning tree
change? What is the new minimum total cost to connect all the colonies?

2 Directed graphs

In all the graphs we’ve seen so far, the edges have been undirected—thatdirectional edges
is, they just connect two vertices, with no inherent directionality. For some
applications, however, the direction of the edges matters. For example,
suppose we are making a graph to represent the streets in downtown DC,
with a vertex for each intersection. As anyone who has driven around in
downtown DC knows, any map of downtown DC is useless if it doesn’t show
you which roads are one-way ! So the direction of the connections matters.

In a directed graph, each edge has a direction, which we indicate in drawings
of the graph by putting an arrowhead on one end. Note that every edge has
a direction—if we want to indicate a two-way connection, we just draw two
edges, one going in each direction.

Figure 6 shows the plot outline of a choose-your-own adventure story, wherewrite your own
adventure 1 is the beginning of the story, and 8 and 9 are the endings.

Problem 6. Please write a story corresponding to the given plot outline.
Here is an example of the beginning of such a story:

5 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



Figure 6: The plot thickens

1. It is a lazy Saturday afternoon, and you are bored. You suddenly
have a great idea! If you decide to skateboard down the middle of the
highway wearing a pretzel costume, go to 2. If you decide to fill your
swimming pool with blue Gatorade, go to 3.

This corresponds to the vertex labeled 1 on the graph since there are edges
going from 1 to 2 and 3. You can use this as #1 if you want, or you can
make up your own.

The graph in Figure 6 is called a directed acyclic graph, or DAG, since thereDAGs
are no cycles in the graph: there is no way to start at some node, follow edges
in the proper directions, and end up back at the node where you started.
(Obviously there would be cycles if the edges were undirected, but you are
not allowed to go backwards along the edges.)

Problem 7. List the vertices in order so that whenever there is an edgetopological sort
from vertex m to vertex n, m comes before n in the list of vertices. For
example, 1, 2, 3, 6, . . . would not be a correct order, since there is an edge
from 6 to 2, so 6 has to come before 2 in the list.

(Note: such a list is called a topological sort, and it turns out that it is
always possible to topologically sort a DAG.)

Problem 8. How many different possible stories are there? In other words,
how many different paths are there from vertex 1 to either vertex 8 or vertex

6 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



9? (Hint : consider the vertices in order of your answer to the previous
problem; for each vertex, figure out how many paths there are to it from
vertex 1.)

2.1 Directed graphs and degree

In an undirected graph, the degree of each vertex was just the number ofin- and outdegree
edges connected to it. But in a directed graph, this isn’t enough: it matters
whether each edge is coming into or going out of the vertex. So, in a directed
graph, we talk about two different degrees: the indegree and the outdegree.
The indegree of a vertex is the number of edges pointing towards the vertex
(coming in) and the outdegree is the number of edges pointing away from
the vertex (going out).

Problem 9. List the indegree and outdegree of each vertex in the graph in
Figure 6.

Problem 10. A directed graph has an Eulerian cycle if every vertex hasEulerian cycles in
directed graphs equal indegree and outdegree—every time you come in, you have to be able

to go out. (Note, the indegree and outdegree of each individual vertex have
to be the same as each other; this doesn’t mean they have to be equal to
the indegree and outdegree of other vertices.) Draw a directed graph which
does have an Eulerian cycle when considered as an undirected graph (that
is, by ignoring all the arrows) but does not have an Eulerian cycle when
considered as a directed graph.

3 Self-loops

Another way we can classify different types of graphs is by asking whether
self-loops are allowed. A self-loop is an edge from a vertex to itself. For
example, the graph in Figure 7 has two edges, one from A to B and the
other from B to itself.

Figure 7: A graph with a self-loop

7 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.



When might self-loops be useful? One common situation is if a graph (oftenstate transition
diagrams a directed graph) is used to represent transitions in some sort of system;

a self-loop would indicate that the system stays in the same state. For
example, the directed, weighted graph in Figure 8 is a (completely made
up) model of a nuclear reactor.

Figure 8: The state model of a nuclear reactor

State A represents normal operation; state B is a danger state in which there
is excess energy in the system; and state !! represents a meltdown/explosion/general
catastrophic failure. The edges represent transitions between the states, and
are labeled with the probability of each transition in any given minute. For
example, if the reactor is in state A, then nine out of ten times, on average,
it will still be in state A after one minute (since the self-loop from A to A
is labeled with 0.9); one time out of ten, on average, it will be in state B
after one minute. From state B, after one minute there is a 90% chance the
reactor will be back in state A, a 9.9% chance it will still be in state B, and
an 0.1% chance that it will blow up.

Problem 11. If the reactor is in state A, what is the probability that it
will blow up after. . .

(a) exactly one minute?

(b) exactly two minutes?

(c) exactly three minutes?

Hint: part (c) is a bit tricky. Start by finding all the paths of length 3 from
A to !!.

The information in Figure 8 doesn’t have to be represented by a graph—for
example, it could be represented in a table as well—but a graph is a nice
visual way to represent the information.

8 c© Brent Yorgey 2008. License: Creative Commons Attribution-Noncommercial 3.0 US.


