Polynomial Functors Constrained by Regular Expressions

Dan Piponi Brent Yorgey

Mathematics of Program Construction
Königswinter, Germany
29 June 2015

Introduction \& Motivation

What this talk is about

linear algebra

regular expressions

polynomial functors

Motivation

Recall that "the derivative of a type is its type of one-hole contexts" (Huet, McBride, Joyal, etc.).

Application: zippers

Motivation

Recall also dissection (McBride, Clowns \& Jokers).

$$
\in \triangle T(\mathbb{N}, C)
$$

Application: tail-recursive traversals (maps and folds)

Motivation

Questions:

- How are these related?
- Where does the definition of dissection come from?
- Where does right come from?

$$
\text { right }:: F A+(\triangle F B A \times B) \cong(A \times \triangle F B A)+F B
$$

Preliminaries

Polynomial functors

Polynomial functors are those functors $F:$ Set \rightarrow Set (or Type \rightarrow Type) inductively built from:

$$
\begin{aligned}
0(A) & =\varnothing \\
1(A) & =\{\star\} \\
X(A) & =A \\
(F+G)(A) & =F(A) \uplus G(A) \\
(F \cdot G)(A) & =F(A) \times G(A)
\end{aligned}
$$

Polynomial functors

Polynomial functors are those functors $F:$ Set \rightarrow Set (or Type \rightarrow Type) inductively built from:

$$
\begin{aligned}
0(A) & =\varnothing \\
1(A) & =\{\star\} \\
X(A) & =A \\
(F+G)(A) & =F(A) \uplus G(A) \\
(F \cdot G)(A) & =F(A) \times G(A)
\end{aligned}
$$

Can easily generalize to multivariate polynomial functors

$$
F: \text { Set }^{n} \rightarrow \text { Set }
$$

X generalizes to family of projections $X_{j}\left(A_{1}, \ldots, A_{n}\right)=A_{j}$.

Implicit/recursive definition

We also allow mutually recursive definitions:

$$
\begin{aligned}
& F_{1}=\Phi_{1}\left(F_{1}, \ldots, F_{n}\right) \\
& \vdots \\
& F_{n}=\Phi_{n}\left(F_{1}, \ldots, F_{n}\right)
\end{aligned}
$$

interpreted as a least fixed point.

Regular expressions

Regular expressions are a language of "patterns" for strings in Σ^{*} (finite sequences of elements from "alphabet" Σ)

$$
\begin{array}{ll}
R::=\varnothing & \\
\mid \varepsilon & \\
\mid a \in \Sigma & \text { empever matches string } \\
\mid R_{1}+R_{2} & \\
\mid R_{1} R_{2} & \\
\mid R_{1} \text { or } R_{2} \\
\mid R^{*} & \\
R_{1} \text { followed by } R_{2} \\
& \\
\text { sequence of zero or more } R
\end{array}
$$

DFAs

Deterministic Finite Automata

Deterministic Finite Automata

Drop sink states; DFA halts and rejects if it can't take a step.

Regular expressions \& DFAs

Well-known: DFAs and regular expressions are "about the same thing" (Kleene, 1951). Every regular expression has a corresponding DFA, and vice versa.

Semirings

Up to isomorphism, both polynomial functors and regular expressions form commutative semirings (aka rigs):

- Associative operations + , • with identities 0, 1
- + is commutative
- - distributes over +
- + does not necessarily have inverses (nor •)

Other examples: $(\mathbb{N},+, \times),(\{$ true, false $\}, \vee, \wedge)$,
$(\mathbb{R} \cup\{\infty\}, \max ,+)$

Semirings

Up to isomorphism, both polynomial functors and regular expressions form commutative semirings (aka rigs):

- Associative operations +, e with identities 0, 1
- + is commutative
- - distributes over +
- + does not necessarily have inverses (nor •)

Other examples: $(\mathbb{N},+, \times),(\{$ true, false $\}, \vee, \wedge)$,
$(\mathbb{R} \cup\{\infty\}, \max ,+)$
In fact, polynomial functors and regular expressions are both star semirings, with $x^{*}=1+x \bullet x^{*}$.

Transition matrices for DFAs

$$
\left[\begin{array}{cccc}
\cdot & A & \cdot & B \\
B & \cdot & A & \cdot \\
\cdot & B & \cdot & A \\
\cdot & \cdot & \cdot & A+B
\end{array}\right]
$$

Transition matrices for DFAs

$$
\left[\begin{array}{cccc}
\cdot & A & \cdot & B \\
B & \cdot & A & \cdot \\
\cdot & B & \cdot & A \\
\cdot & \cdot & \cdot & A+B
\end{array}\right]
$$

Interpret edge labels in an arbitrary semiring (weighted automata theory; O'Connor 2011, Dolan 2013)

Constrained polynomial functors

Constrained polynomial functors

- Given a (univariate) F and some regular expression R over $\Sigma=\left\{A_{1}, \ldots, A_{n}\right\}$
- Want to have a restricted version F_{R} of $F\left(A_{1}+\cdots+A_{n}\right)$ so the sequences of A_{i} (obtained from an inorder traversal) always match R.

$T(A+B+C)$

$T_{A^{*} B^{*} C^{*}}(A, B, C)$

Example

$$
\begin{aligned}
& L=1+X \times L \\
& R=(A A)^{*} \\
& \text { (3) }-4 \text { - } \\
& L_{R}(\mathbb{N})= \\
& \text { (1)-4)-(2) } \\
& \text { (3)-9-(2)- }
\end{aligned}
$$

Example

Example

\ldots this is differentiation! $P^{\prime}(A)=P_{R}(A, 1)$.

Example: Dissection

The problem

Given a polynomial functor F and regular expression R, compute a (system of mutually recursive, multivariate) polynomial functor(s) representing F_{R}.

The setup

Given:

- Polynomial functor F
- DFA D

The setup

Given:

- Polynomial functor F
- DFA D

Let $F_{i j}$ denote the (multivariate) polynomial functor

- with same shape as F
- constrained by sequences which take the DFA from state i to state j

The setup

Given:

- Polynomial functor F
- DFA D

Let $F_{i j}$ denote the (multivariate) polynomial functor

- with same shape as F
- constrained by sequences which take the DFA from state i to state j

Ultimately we are interested in $\sum_{q \in \operatorname{final}(D)} F_{1 q}$.

$$
0_{i j}=0
$$

0 is the only thing with the same shape as 0 .

$$
1_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

0 and 1 are the only things with the same shape as 1 . A 1 -structure doesn't make the DFA transition at all.

$$
\begin{array}{r}
X_{i j}=\sum_{i \rightarrow A_{j}} X_{A} \\
\text { OR } \quad \text { OR B }
\end{array}
$$

$$
\begin{gathered}
(F+G)_{i j}=F_{i j}+G_{i j} \\
=\sim(F+G)_{i j} \\
=
\end{gathered}
$$

$$
\text { (i) } \sim \sim \sim \text { Fin (i) } \sim F_{i j}^{G_{i j}} \rightarrow \text { (i) }
$$

$$
\begin{aligned}
0_{i j} & =0 \\
1_{i j} & = \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
X_{i j} & =\sum_{i A_{j}} X_{A} \\
(F+G)_{i j} & =F_{i j}+G_{i j} \\
(F \bullet G)_{i j} & =\sum_{q \in \operatorname{states}(D)} F_{i q} G_{q j}
\end{aligned}
$$

$$
\begin{aligned}
0_{i j} & =0 \\
1_{i j} & = \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
X_{i j} & =\sum_{i A_{j}} X_{A} \\
(F+G)_{i j} & =F_{i j}+G_{i j} \\
(F \bullet G)_{i j} & =\sum_{q \in \operatorname{states}(D)} F_{i q} G_{q j}
\end{aligned}
$$

These are matrix operations! $X_{i j}$ is the transition matrix for the DFA, interpreted in the semiring of polynomial functors.

Given a DFA D,

$$
F \mapsto\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 n} \\
\vdots & \ddots & \vdots \\
F_{n 1} & \ldots & F_{n n}
\end{array}\right]
$$

is a semiring homomorphism from (unary) polynomial functors to $n \times n$ matrices of (arity- $|\Sigma|)$ polynomial functors.

Example

$$
\begin{aligned}
& L=1+X L \quad R=(A A)^{*} \\
& \text { (1) }{ }_{A}^{A} \text { (2) }\left[\begin{array}{cc}
0 & x_{A} \\
X_{A} & 0
\end{array}\right] \\
& {\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & X_{A} \\
X_{A} & 0
\end{array}\right]\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
1+X_{A} L_{21} & X_{A} L_{22} \\
X_{A} L_{11} & 1+X_{A} L_{12}
\end{array}\right] .
\end{aligned}
$$

Example

$$
T=1+X T^{2} \quad R=A^{*} H A^{*}
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
X_{A} & X_{H} \\
0 & X_{A}
\end{array}\right]\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]^{2} \\
& =\left[\begin{array}{cc}
X_{A} T_{11}^{2} & X_{A}\left(T_{11} T_{12}+T_{12} T_{22}\right)+X_{H} T_{22}^{2} \\
0 & X_{A} T_{22}^{2}
\end{array}\right] .
\end{aligned}
$$

Derivative and dissection

Derivative

$$
\begin{aligned}
& \underbrace{1}_{A} \underbrace{H}_{A}\left[\begin{array}{cc}
X_{A} & X_{H} \\
0 & X_{A}
\end{array}\right] \\
& \\
& \\
& F \mapsto\left[\begin{array}{ll}
F & F^{\prime} \\
0 & F
\end{array}\right]
\end{aligned}
$$

Derivative

$$
\begin{gathered}
1 \\
F \mapsto\left[\begin{array}{cc}
F & F^{\prime} \\
0 & F
\end{array}\right] \\
{\left[\begin{array}{cc}
F & F^{\prime} \\
0 & F
\end{array}\right]\left[\begin{array}{cc}
X_{A} & G_{H}^{\prime} \\
0 & X_{A}
\end{array}\right]=\left[\begin{array}{cc}
F G & F G^{\prime}+F^{\prime} G \\
0 & F G
\end{array}\right]}
\end{gathered}
$$

Dissection

$$
F \mapsto\left[\begin{array}{cc}
L F & \Delta F \\
0 & \lrcorner F
\end{array}\right] \quad\left(\begin{array}{cccc}
\angle F & B & A=F & B \\
\searrow F & B & A=F & A
\end{array}\right)
$$

Dissection

$$
\triangle(F G)=\angle F \triangle G+\triangle F \angle G
$$

Dissection

$$
\begin{gathered}
\Delta(F G)=L F \triangle G+\triangle F L G \\
{\left[\begin{array}{cc}
L F & \triangle F \\
0 & \searrow F
\end{array}\right]\left[\begin{array}{cc}
\angle G & \Delta G \\
0 & \lrcorner G
\end{array}\right]=\left[\begin{array}{cc}
\angle F L G & L F \triangle G+\triangle F \backslash G \\
0 & \searrow F \backslash G
\end{array}\right]}
\end{gathered}
$$

Divided differences

$$
f_{b, a}=\frac{f_{b}-f_{a}}{b-a}
$$

Divided differences

$$
f_{b, a}=\frac{f_{b}-f_{a}}{b-a}
$$

$f_{b, a}$ is the average change in f from a to b, i.e. the secant slope.

Note $f_{b, a} \rightarrow f^{\prime}(a)$ as $b \rightarrow a$.

Divided differences and dissection?

Divided differences and dissection?

Well-known that

$$
f \mapsto\left[\begin{array}{cc}
f_{b} & f_{b, a} \\
0 & f_{a}
\end{array}\right]
$$

is a semiring homomorphism.
Proof (interesting bit):

$$
\begin{aligned}
(f g)_{b, a} & =\frac{(f g)_{b}-(f g)_{a}}{b-a} \\
& =\frac{(f g)_{b}-f_{b} g_{a}+f_{b} g_{a}-(f g)_{a}}{b-a} \\
& =\frac{f_{b}\left(g_{b}-g_{a}\right)+\left(f_{b}-f_{a}\right) g_{a}}{b-a} \\
& =f_{b} g_{b, a}+f_{b, a} g_{a}
\end{aligned}
$$

Divided differences and right

Rearranging $f_{b, a}=\frac{f_{b}-f_{a}}{b-a}$ yields

$$
f_{a}+f_{b, a} \times b=a \times f_{b, a}+f_{b}
$$

aka

$$
\text { right :: } F A+(\triangle F B A \times B) \cong(A \times \triangle F B A)+F B
$$

Higher-order divided differences?

$$
f \mapsto\left[\begin{array}{ccc}
f_{c} & f_{c, b} & f_{c, b, a} \\
0 & f_{b} & f_{b, a} \\
0 & 0 & f_{a}
\end{array}\right]
$$

Higher-order divided differences?

$$
f \mapsto\left[\begin{array}{ccc}
f_{c} & f_{c, b} & f_{c, b, a} \\
0 & f_{b} & f_{b, a} \\
0 & 0 & f_{a}
\end{array}\right]
$$

Higher-order divided differences?

$$
f_{x_{n} \ldots x_{0}}=\frac{f_{x_{n} \ldots x_{1}}-f_{x_{n-1} \ldots x_{0}}}{x_{n}-x_{0}}
$$

Corresponding isomorphism??

Thank you!

