4 Ordinals

The ordinals are canonical well-ordered sets.

Definition 4.1. A set x is *transitive* iff $\forall y.y \in x \implies y \subseteq x$.

Remark. If z is transitive, then $x \in y \in z \implies x \in z$.

Definition 4.2. x is an *ordinal* iff

- x is transitive, and
- $\langle x, \in \uparrow x \rangle$ is a well-ordering.

Remark. In what follows, we use α , β , and γ to refer to arbitrary ordinals.

Lemma 4.3. If $x \in \alpha$, then x is an ordinal.

Proof. Since α is transitive, $x \subseteq a$; therefore it is clear that $\langle x, \in \upharpoonright x \rangle$ is a wellordering since $\langle \alpha, \in \upharpoonright \alpha \rangle$ is. To see that x is transitive, suppose the contrary. That is, suppose there is some $y \in x$ and $z \in y$ such that $z \notin x$. Note that x, y, and z are all elements of α , since α is transitive. Since α is well-ordered under \in , either x = z or $x \in z$. If x = z, then $z \in y \in z$, contradicting the fact that α is well-ordered; if $x \in z$, then $x \in z \in y \in x$, contradicting the fact that x is well-ordered.

Lemma 4.4. If $\beta \subseteq \alpha$ and $\beta \neq \alpha$ then $\beta \in \alpha$.

Proof. Consider the set $\alpha - \beta$, which is nonempty by the given premises. Let γ be the \in -least element of $\alpha - \beta$. Then $\beta = \gamma$, which can be shown as follows.

 (\subseteq) . Suppose there is some element $x \in \beta$ for which $x \notin \gamma$. Since x and γ are both elements of α , we must therefore have $\gamma \leq x \in \beta$. Since β is transitive, this implies that $\gamma \in \beta$, a contradiction.

 (\supseteq) . Suppose $x \in \gamma$; then we must also have $x \in \beta$, since otherwise it would be an element of $\alpha - \beta$ less than γ , contradicting the definition of γ .

Lemma 4.5. For every α , β , either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

Proof. Suppose otherwise. Consider $\gamma = \alpha \cap \beta$, which by assumption is a proper subset of both α and β . It is easy to check that γ is an ordinal. But then by Lemma 4.4, $\gamma \in \alpha$ and $\gamma \in \beta$, so $\gamma \in \alpha \cap \beta = \gamma$, a contradiction.

Theorem 4.6. The class of ordinals is well-ordered by \in .

Proof. This follows directly from Lemmas 4.4 and 4.5.

SDG

Theorem 4.7. For every set x there is an α such that $\alpha \notin x$.

Proof. The proof of this theorem is the *Burali-Forti paradox*. Suppose there is a set x of which every ordinal is an element. Then by comprehension we may form the set

$$ord = \{ \alpha \in x \mid \alpha \text{ is an ordinal } \}.$$

But by Theorem 4.6 we can see that ord is well-ordered; by Lemma 4.3 it is transitive; hence, $ord \in ord$, a contradiction.

Remark. Theorem 4.7 can equivalently be stated as "the class of ordinals is a proper class."

Some examples of ordinals:

 $\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

can all easily be checked to be ordinals. Also, if α is an ordinal, then $\alpha \cup \{\alpha\}$ is also.

Definition 4.8. The successor of α , denoted $\alpha + 1$, is $\alpha \cup \{\alpha\}$.

Theorem 4.9. $\alpha + 1$ is an ordinal. Moreover, it is the least ordinal bigger than α .

Proof. It is easy to see that $(\alpha \cup \{\alpha\}, \in)$ is a strict linear order: for any $x, y \in \alpha \cup \{\alpha\}$, with $x \neq y$, either $x, y \in \alpha$ (in which case $x \in y$ or $y \in x$), or one of x, y is equal to α and the other is an element of α . That every non-empty subset has an \in -least member follows easily. To see that $\alpha \cup \{\alpha\}$ is transitive, it suffices to note that $\alpha \subseteq \alpha \cup \{\alpha\}$.

To show that $\alpha + 1$ is the least ordinal bigger than α , suppose that $\beta > \alpha$. Then by definition, $\alpha \in \beta$, and therefore $\alpha \subseteq \beta$; so $\alpha + 1 = \alpha \cup \{\alpha\} \subseteq \beta$. By Lemma 4.4, $\alpha + 1 \leq \beta$.

Definition 4.10. α is a successor ordinal iff $\alpha = \beta + 1$ for some β . Otherwise, α is a *limit ordinal*.

Definition 4.11. The smallest non-zero limit ordinal is called ω (and it exists by the Axiom of Infinity). The elements of ω are called *natural numbers*.

Definition 4.12. $x \sim y$ iff there exists a functional relation which is a 1-1, onto mapping from x to y.

Definition 4.13. A set x is *finite* iff there exists some $n \in \omega$ for which $x \sim n$.

Theorem 4.14. For every well-ordering $\langle x, \langle \rangle$ there is an ordinal α such that $\langle x, \langle \rangle$ is isomorphic to $\langle \alpha, \in \uparrow \alpha \rangle$.

Proof. XXX finish me!

SDG

Theorem 4.15 (Transfinite Induction). If

1. $\varphi(\emptyset)$, 2. $\varphi(\alpha) \implies \varphi(\alpha+1)$, and 3. $\lim(\lambda) \land (\forall \beta.\beta < \lambda \implies \varphi(\beta)) \implies \varphi(\lambda)$,

then $\forall \beta. \varphi(\beta)$.

Proof. Suppose not; let γ be the \in -minimal ordinal for which $\neg \varphi(\gamma)$. A simple argument by cases (whether γ is \emptyset , a successor ordinal, or a limit ordinal) shows that γ cannot exist.