Lecture 3: Ordinals, transfinite induction
January 26, 2009

4 Ordinals

The ordinals are canonical well-ordered sets.
Definition 4.1. A set x is transitive iff Vy.y € . — y C x.
Remark. If z is transitive, then z € y € 2 — z € z.
Definition 4.2. z is an ordinal iff
e I is transitive, and
o (z,€[ x) is a well-ordering.
Remark. In what follows, we use «, 3, and =y to refer to arbitrary ordinals.
Lemma 4.3. If x € o, then x is an ordinal.

Proof. Since « is transitive, x C a; therefore it is clear that (x, €[ ) is a well-
ordering since (o, €] a) is. To see that x is transitive, suppose the contrary.
That is, suppose there is some y € x and z € y such that z € x. Note that z, y,
and z are all elements of «, since « is transitive. Since « is well-ordered under
€, either x = z or z € z. If x = 2, then z € y € 2z, contradicting the fact that
« is well-ordered; if € z, then = € z € y € x, contradicting the fact that x is
well-ordered. 4

Lemma 4.4. If 3 C « and 8 # « then § € .

Proof. Consider the set a — 3, which is nonempty by the given premises. Let
be the €-least element of a — 3. Then 8 = -, which can be shown as follows.
(C). Suppose there is some element x € § for which x ¢ ~. Since = and ~
are both elements of a, we must therefore have v < x € 3. Since [ is transitive,
this implies that v € 3, a contradiction.
(D). Suppose x € «; then we must also have x € [3, since otherwise it would
be an element of o — 3 less than -y, contradicting the definition of ~. &

Lemma 4.5. For every «, (3, either « C 8 or 8 C «.

Proof. Suppose otherwise. Consider v = aN 3, which by assumption is a proper
subset of both o and B. It is easy to check that v is an ordinal. But then by
Lemma 4.4, v € a and v € 3, so v € a N B =+, a contradiction. [

Theorem 4.6. The class of ordinals is well-ordered by €.

Proof. This follows directly from Lemmas 4.4 and 4.5. X



Theorem 4.7. For every set x there is an a such that o & .

Proof. The proof of this theorem is the Burali-Forti paradoz. Suppose there is
a set x of which every ordinal is an element. Then by comprehension we may
form the set

ord={a € x| «is an ordinal }.

But by Theorem 4.6 we can see that ord is well-ordered; by Lemma 4.3 it is
transitive; hence, ord € ord, a contradiction. 5

Remark. Theorem 4.7 can equivalently be stated as “the class of ordinals is a
proper class.”

Some examples of ordinals:

0, {0}, {0,{0}}, {0,{0}.{0,{0}}}

can all easily be checked to be ordinals. Also, if « is an ordinal, then aU {a} is
also.

Definition 4.8. The successor of a, denoted o + 1, is U {a}.

Theorem 4.9. a+1 is an ordinal. Moreover, it is the least ordinal bigger than
a.

Proof. Tt is easy to see that (o U {a}, €) is a strict linear order: for any x,y €
a U {a}, with z # y, either z,y € « (in which case x € y or y € z), or one
of z,y is equal to a and the other is an element of . That every non-empty
subset has an €-least member follows easily. To see that a U {«} is transitive,
it suffices to note that o C aU {a}.

To show that a + 1 is the least ordinal bigger than «, suppose that g > a.
Then by definition, a € 3, and therefore « C 3; so a +1 = aU{a} C 5. By
Lemma 4.4, o +1 < . &

Definition 4.10. « is a successor ordinal iff « = §+ 1 for some §. Otherwise,
a is a limit ordinal.

Definition 4.11. The smallest non-zero limit ordinal is called w (and it exists
by the Axiom of Infinity). The elements of w are called natural numbers.

Definition 4.12. x ~ y iff there exists a functional relation which is a 1-1, onto
mapping from z to y.

Definition 4.13. A set x is finite iff there exists some n € w for which z ~ n.

Theorem 4.14. For every well-ordering (x, <) there is an ordinal o such that
(z,<) is isomorphic to {a, €[ ).

Proof. XXX finish me! B4

Theorem 4.15 (Transfinite Induction). If



1. ¢(0),
2. p(la) = p(a+1), and
g ImA\) A (V8.8 <A = o(B) = »(\),

then ¥3.0(5).

Proof. Suppose not; let 4 be the €-minimal ordinal for which —¢(). A simple
argument by cases (whether v is (), a successor ordinal, or a limit ordinal) shows
that v cannot exist. =



