Lecture 3: Ordinals, transfinite induction
 January 26, 2009

4 Ordinals

The ordinals are canonical well-ordered sets.
Definition 4.1. A set x is transitive iff $\forall y . y \in x \Longrightarrow y \subseteq x$.
Remark. If z is transitive, then $x \in y \in z \Longrightarrow x \in z$.
Definition 4.2. x is an ordinal iff

- x is transitive, and
- $\langle x, \in \upharpoonright x\rangle$ is a well-ordering.

Remark. In what follows, we use α, β, and γ to refer to arbitrary ordinals.
Lemma 4.3. If $x \in \alpha$, then x is an ordinal.
Proof. Since α is transitive, $x \subseteq a$; therefore it is clear that $\langle x, \in \upharpoonright x\rangle$ is a wellordering since $\langle\alpha, \in \upharpoonright \alpha\rangle$ is. To see that x is transitive, suppose the contrary. That is, suppose there is some $y \in x$ and $z \in y$ such that $z \notin x$. Note that x, y, and z are all elements of α, since α is transitive. Since α is well-ordered under \in, either $x=z$ or $x \in z$. If $x=z$, then $z \in y \in z$, contradicting the fact that α is well-ordered; if $x \in z$, then $x \in z \in y \in x$, contradicting the fact that x is well-ordered.

Lemma 4.4. If $\beta \subseteq \alpha$ and $\beta \neq \alpha$ then $\beta \in \alpha$.
Proof. Consider the set $\alpha-\beta$, which is nonempty by the given premises. Let γ be the \in-least element of $\alpha-\beta$. Then $\beta=\gamma$, which can be shown as follows.
(\subseteq). Suppose there is some element $x \in \beta$ for which $x \notin \gamma$. Since x and γ are both elements of α, we must therefore have $\gamma \leq x \in \beta$. Since β is transitive, this implies that $\gamma \in \beta$, a contradiction.
(〇). Suppose $x \in \gamma$; then we must also have $x \in \beta$, since otherwise it would be an element of $\alpha-\beta$ less than γ, contradicting the definition of γ.

Lemma 4.5. For every α, β, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.
Proof. Suppose otherwise. Consider $\gamma=\alpha \cap \beta$, which by assumption is a proper subset of both α and β. It is easy to check that γ is an ordinal. But then by Lemma 4.4, $\gamma \in \alpha$ and $\gamma \in \beta$, so $\gamma \in \alpha \cap \beta=\gamma$, a contradiction.

Theorem 4.6. The class of ordinals is well-ordered by \in.
Proof. This follows directly from Lemmas 4.4 and 4.5.

Theorem 4.7. For every set x there is an α such that $\alpha \notin x$.
Proof. The proof of this theorem is the Burali-Forti paradox. Suppose there is a set x of which every ordinal is an element. Then by comprehension we may form the set

$$
\text { ord }=\{\alpha \in x \mid \alpha \text { is an ordinal }\} .
$$

But by Theorem 4.6 we can see that ord is well-ordered; by Lemma 4.3 it is transitive; hence, ord $\in \operatorname{ord}$, a contradiction.

Remark. Theorem 4.7 can equivalently be stated as "the class of ordinals is a proper class."

Some examples of ordinals:

$$
\emptyset, \quad\{\emptyset\}, \quad\{\emptyset,\{\emptyset\}\}, \quad\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}
$$

can all easily be checked to be ordinals. Also, if α is an ordinal, then $\alpha \cup\{\alpha\}$ is also.

Definition 4.8. The successor of α, denoted $\alpha+1$, is $\alpha \cup\{\alpha\}$.
Theorem 4.9. $\alpha+1$ is an ordinal. Moreover, it is the least ordinal bigger than α.

Proof. It is easy to see that $(\alpha \cup\{\alpha\}, \in)$ is a strict linear order: for any $x, y \in$ $\alpha \cup\{\alpha\}$, with $x \neq y$, either $x, y \in \alpha$ (in which case $x \in y$ or $y \in x$), or one of x, y is equal to α and the other is an element of α. That every non-empty subset has an \in-least member follows easily. To see that $\alpha \cup\{\alpha\}$ is transitive, it suffices to note that $\alpha \subseteq \alpha \cup\{\alpha\}$.

To show that $\alpha+1$ is the least ordinal bigger than α, suppose that $\beta>\alpha$. Then by definition, $\alpha \in \beta$, and therefore $\alpha \subseteq \beta$; so $\alpha+1=\alpha \cup\{\alpha\} \subseteq \beta$. By Lemma 4.4, $\alpha+1 \leq \beta$.

Definition 4.10. α is a successor ordinal iff $\alpha=\beta+1$ for some β. Otherwise, α is a limit ordinal.

Definition 4.11. The smallest non-zero limit ordinal is called ω (and it exists by the Axiom of Infinity). The elements of ω are called natural numbers.

Definition 4.12. $x \sim y$ iff there exists a functional relation which is a $1-1$, onto mapping from x to y.

Definition 4.13. A set x is finite iff there exists some $n \in \omega$ for which $x \sim n$.
Theorem 4.14. For every well-ordering $\langle x,<\rangle$ there is an ordinal α such that $\langle x,<\rangle$ is isomorphic to $\langle\alpha, \in \upharpoonright \alpha\rangle$.

Proof. XXX finish me!
Theorem 4.15 (Transfinite Induction). If

1. $\varphi(\emptyset)$,
2. $\varphi(\alpha) \Longrightarrow \varphi(\alpha+1)$, and
3. $\lim (\lambda) \wedge(\forall \beta \cdot \beta<\lambda \Longrightarrow \varphi(\beta)) \Longrightarrow \varphi(\lambda)$,
then $\forall \beta . \varphi(\beta)$.
Proof. Suppose not; let γ be the \in-minimal ordinal for which $\neg \varphi(\gamma)$. A simple argument by cases (whether γ is \emptyset, a successor ordinal, or a limit ordinal) shows that γ cannot exist.
