Lecture 4: Transfinite recursion, cardinals

January 28, 2009

Definition 4.16. The class of sequences Seq is defined by

$$
\text { Seq }=\{f \mid \operatorname{ord}(\operatorname{dom}(f)) \wedge f \text { is a function }\} .
$$

Theorem 4.17 (Transfinite Recursion). For any functional relation $G: S e q \rightarrow$ V, there exists a unique functional relation F satisfying

$$
F(\alpha)=G(F \upharpoonright \alpha)
$$

for all α.
Proof. We will show that for every α there is a unique function f_{α} such that $\operatorname{dom}\left(f_{\alpha}\right)=\alpha$, and $\forall \beta<\alpha$,

$$
f_{\alpha}(\beta)=G\left(f_{\alpha} \upharpoonright \beta\right)
$$

and $\forall \gamma<\beta, f_{\beta} \upharpoonright \gamma=f_{\gamma}$.
The proof is by transfinite induction.

- $\alpha=0 . f_{\alpha}=\{ \}$ trivially satisfies the conditions.
- $\alpha=\beta+1$. By the IH, assume there exists a unique f_{β} that satisfies the conditions. Now let

$$
f_{\beta+1}(\gamma)= \begin{cases}f_{\beta}(\gamma) & \gamma<\beta \\ G\left(f_{\beta}\right) & \gamma=\beta\end{cases}
$$

We must show that for every $\delta<\beta+1, f_{\beta+1}(\delta)=G\left(f_{\beta+1} \upharpoonright \delta\right)$. There are two cases.

- If $\delta=\beta$, then $f_{\beta+1}(\delta)=G\left(f_{\beta}\right)=G\left(f_{\beta+1} \upharpoonright \beta\right)$, since it is clear from the definition of $f_{\beta+1}$ that $f_{\beta+1} \upharpoonright \beta=f_{\beta}$.
- If $\delta<\beta$, then $f_{\beta+1}(\delta)=f_{\beta}(\delta)$, which is equal to $G\left(f_{\beta} \upharpoonright \delta\right)$ by the IH. But this is equal to $G\left(f_{\beta+1} \upharpoonright \delta\right)$ by definition of $f_{\beta+1}$.

By the IH , we already know that $f_{\beta} \upharpoonright \zeta=f_{\zeta}$ for all $\zeta<\beta$; we must show that forall $\zeta<\beta+1, f_{\beta+1} \upharpoonright \zeta=f_{\zeta}$. First, if $\zeta<\beta$, this follows from the IH and the definition of $f_{\beta+1}$. If $\zeta=\beta$, we must show $f_{\beta+1} \upharpoonright \beta=f_{\beta}$; this follows immediately from the definition of $f_{\beta+1}$.
The last thing we must show is that $f_{\beta+1}$ is unique. Suppose there is some h which also satisfies the conditions, that is, $\operatorname{dom}(h)=\beta+1$ and $\forall \delta<\beta+1, h(\delta)=G(h \upharpoonright \delta)$. Then pick $\delta<\beta+1$ to be the smallest ordinal for which $h(\delta) \neq f_{\beta+1}(\delta)$. Then $f_{\beta+1} \upharpoonright \delta=h \upharpoonright \delta$, so $f_{\beta+1}(\delta)=$ $G\left(f_{\beta+1} \upharpoonright \delta\right)=G(h \upharpoonright \delta)=h(\delta)$, a contradiction.

- $\lim (\alpha)$. By the IH, assume that for all $\beta<\alpha$, there exists a f_{β} satisfying the conditions. Then let $f_{\alpha}=\bigcup_{\beta<\alpha} f_{\beta}$.
First, we must show that f_{α} is a set. This follows from the Axiom of Replacement, since it is the union of the image of α under the map $\beta \mapsto f_{\beta}$, which is a functional relation by the uniqueness of f_{β} under the IH.
The fact that f_{α} is functional follows from the IH, since we know that $f_{\beta} \upharpoonright \gamma=f_{\gamma}$ for all $\gamma<\beta$.
Let $\beta<\alpha$. Then

$$
\begin{aligned}
f_{\alpha}(\beta) & =f_{\beta+1}(\beta) & & \beta+1<\alpha, \text { def. of } f_{\alpha} \\
& =G\left(f_{\beta+1} \upharpoonright \beta\right) & & \text { IH } \\
& =G\left(f_{\alpha} \upharpoonright \beta\right) & & \text { intuitively obvious. . ?? }
\end{aligned}
$$

We need do nothing to establish that $\forall \gamma<\beta<\alpha, f_{\beta} \upharpoonright \gamma=f_{\gamma}$; it already holds by the inductive hypothesis.
The argument for the uniqueness of f_{α} is the same as in the previous case.
Now define $F(\alpha)=G\left(f_{\alpha}\right)$. We claim that F satisfies the theorem. Note that F is a functional relation since we have defined it pointwise. Note also that $F \upharpoonright \alpha$ is a set (by Replacement: $F \upharpoonright \alpha=\{(\beta, F(\beta)) \mid \beta \in \alpha\}$). To see that $f_{\alpha}=F \upharpoonright \alpha$, consider any $\beta \in \operatorname{dom}\left(f_{\alpha}\right)=\operatorname{dom}(F \upharpoonright \alpha)=\alpha$; we have $f_{\alpha}(\beta)=G\left(f_{\alpha} \upharpoonright \beta\right)=G\left(f_{\beta}\right)=F(\beta)$.

5 Cardinals

Definition 5.1. X is equivalent to Y, denoted $X \sim Y$ (or $|X|=|Y|$), if there is a mapping $f: X \xrightarrow[\text { onto }]{1-1} Y$.

Definition 5.2. $X \leq Y$ if there is a mapping $f: X \xrightarrow{1-1} Y$.
Theorem 5.3 (Cantor-Schröder-Bernstein). $X \leq Y \wedge Y \leq X \Longrightarrow X \sim Y$.
Proof. Suppose $f: X \xrightarrow{1-1} Y$ and $g: Y \xrightarrow{1-1} X$ are functions implied by the premises. Let

$$
\begin{aligned}
X_{0} & =X-g(Y) \\
X_{n+1} & =(g \circ f)\left(X_{n}\right) \\
X_{\omega} & =\bigcup_{n \in \omega} X_{n} .
\end{aligned}
$$

and define

$$
h(a)= \begin{cases}f(a) & a \in X_{\omega} \\ g^{-1}(a) & a \in X-X_{\omega}\end{cases}
$$

Note that h is total, since if $a \in X-X_{\omega}$, then $a \notin X_{0}$, so $a \in \operatorname{rng}(g)$ and $g^{-1}(a)$ is defined.

We claim that h is a one-to-one, onto function from X to Y.

- To show that h is one-to-one, suppose $a, b \in X$ and $h(a)=h(b)$. If $a, b \in X_{\omega}$, then $f(a)=f(b)$, so $a=b$ since f is one-to-one. If $a, b \notin X_{\omega}$, then $g^{-1}(a)=g^{-1}(b)$; applying g to both sides yields $a=b$. So, without loss of generality, suppose $a \in X_{\omega}$ and $b \notin X_{\omega}, f(a)=g^{-1}(b)$; we claim this case is impossible. Applying g to both sides yields $g(f(a))=b$; but since $a \in X_{\omega}$ then b is also, a contradiction.
- Now we show h is onto. Let $b \in Y$, and let $f\left(X_{\omega}\right)=Y_{\omega}$. If $b \in Y_{\omega}$, then it is in the image of h, since $h\left(X_{\omega}\right)=f\left(X_{\omega}\right)=Y_{\omega}$. Otherwise, consider $g(b) . g(b) \notin X_{\omega}$; if it were, $g(b) \in X_{n}$ for some n, so we would have $g(b)=g(f(q))$ for some $q \in X_{n-1}$. But since g is one-to-one, this implies $b=f(q)$, that is, $b \in Y_{\omega}$, a contradiction. Therefore, $h(g(b))=$ $g^{-1}(g(b))=b$.

Definition 5.4. $X<Y$ if $X \leq Y$ and $Y \not \leq X$.
Theorem 5.5 (Cantor diagonal). For every X, there exists a Y such that $X<Y$.

Proof. Claim: $X<\mathcal{P}(X)$. Let $f: X \rightarrow \mathcal{P}(X)$, and define

$$
a=\{b \in X \mid b \notin f(b)\}
$$

Note that $a \in \mathcal{P}(X)$. We claim that $a \notin \operatorname{rng}(f)$. If it were, there would be some $c \in X$ with $f(c)=a$; is $c \in f(c)$? If it is, it isn't; if it isn't, it is. So there. f is not onto.

Note that $X \leq \mathcal{P}(X)$, since $f(a)=\{a\}$ is a one-to-one mapping.
If $\mathcal{P}(X) \leq X$, by Cantor-Schröder-Bernstein there would be a one-to-one, onto map between them, but we have shown that any mapping $X \rightarrow \mathcal{P}(X)$ is not onto. Therefore, $X<\mathcal{P}(X)$.

Remark. Why is this called a diagonal argument? Note that $\mathcal{P}(X) \sim 2^{X}$ (where X^{Y}, also sometimes written ${ }^{Y} X$, denotes the set of functions from Y to X). In particular, if $Z \subseteq X$, we set $Z \in \mathcal{P}(X)$ to the indicator function

$$
g_{Z}(a)= \begin{cases}1 & a \in Z \\ 0 & a \notin Z\end{cases}
$$

In the special case that $X \sim \omega$, if we assume there exists a 1-1, onto mapping from X to $\mathcal{P}(X)$, we can make a table of the indicator functions to which each element of X is sent, as follows:

	x_{0}	x_{1}	x_{2}	x_{3}	\ldots
x_{0}	1	0	1	1	
x_{1}	0	1	0	1	
x_{2}	0	0	0	1	
x_{3}	1	0	0	0	
\vdots					\ddots

The i th row is the indicator function describing the subset to which x_{i} is sent. Now we simply note that the argument in the above proof corresponds to picking out the diagonal elements (here $1,1,0,0, \ldots)$, flipping them $(0,0,1,1, \ldots)$, and noting that the resulting sequence cannot be a row of the table.

Definition 5.6. κ is a cardinal iff κ is an ordinal such that $\alpha \nsim \kappa$ for all $\alpha \in \kappa$.
Remark. A cardinal κ is an initial ordinal-the smallest ordinal having its cardinality.

Exercise: show that every natural number is a cardinal, and that ω is a cardinal (ω is the first infinite cardinal).

Remark. By Theorem 5.5, we know that $\omega<\mathcal{P}(\omega)$. A natural question arises: is there some $X \subseteq \mathcal{P}(\omega)$ for which $\omega<X<\mathcal{P}(\omega)$? This is an interesting question, especially given that it can be shown that $\mathbb{R} \sim \mathcal{P}(\omega)$. Hilbert thought this question so important that he made it the very first problem in his famous 1900 list.

Cantor hypothesized that there does not exist such an X; this hypothesis is known as the continuum hypothesis (CH). This is a reasonable hypothesis, especially given the establishment of various special cases, such as the fact that for all $X \subseteq \mathbb{R}$, if X is closed, then it is not the case that $\omega<X<\mathbb{R}$ (CantorBendixson).

It turns out that the continuum hypothesis is independent of ZF: Gödel in 1939 showed that the consistency of ZF implies the consistency of ZF +AC +CH ; but Cohen showed in 1963 that the consistency of ZF also implies the consistency of $\mathrm{ZF}+\mathrm{AC}+\neg \mathrm{CH}$.

