
Lecture 4: Transfinite recursion, cardinals
January 28, 2009

Definition 4.16. The class of sequences Seq is defined by

Seq = { f | ord(dom(f)) ∧ f is a function }.

Theorem 4.17 (Transfinite Recursion). For any functional relation G : Seq →
V , there exists a unique functional relation F satisfying

F (α) = G(F ¹ α)

for all α.

Proof. We will show that for every α there is a unique function fα such that
dom(fα) = α, and ∀β < α,

fα(β) = G(fα ¹ β),

and ∀γ < β, fβ ¹ γ = fγ .
The proof is by transfinite induction.

• α = 0. fα = {} trivially satisfies the conditions.

• α = β + 1. By the IH, assume there exists a unique fβ that satisfies the
conditions. Now let

fβ+1(γ) =

{
fβ(γ) γ < β

G(fβ) γ = β.

We must show that for every δ < β +1, fβ+1(δ) = G(fβ+1 ¹ δ). There are
two cases.

– If δ = β, then fβ+1(δ) = G(fβ) = G(fβ+1 ¹ β), since it is clear from
the definition of fβ+1 that fβ+1 ¹ β = fβ .

– If δ < β, then fβ+1(δ) = fβ(δ), which is equal to G(fβ ¹ δ) by the
IH. But this is equal to G(fβ+1 ¹ δ) by definition of fβ+1.

By the IH, we already know that fβ ¹ ζ = fζ for all ζ < β; we must show
that forall ζ < β + 1, fβ+1 ¹ ζ = fζ . First, if ζ < β, this follows from the
IH and the definition of fβ+1. If ζ = β, we must show fβ+1 ¹ β = fβ ; this
follows immediately from the definition of fβ+1.

The last thing we must show is that fβ+1 is unique. Suppose there is
some h which also satisfies the conditions, that is, dom(h) = β + 1 and
∀δ < β + 1, h(δ) = G(h ¹ δ). Then pick δ < β + 1 to be the smallest
ordinal for which h(δ) 6= fβ+1(δ). Then fβ+1 ¹ δ = h ¹ δ, so fβ+1(δ) =
G(fβ+1 ¹ δ) = G(h ¹ δ) = h(δ), a contradiction.
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• lim(α). By the IH, assume that for all β < α, there exists a fβ satisfying
the conditions. Then let fα =

⋃
β<α fβ .

First, we must show that fα is a set. This follows from the Axiom of
Replacement, since it is the union of the image of α under the map β 7→ fβ ,
which is a functional relation by the uniqueness of fβ under the IH.

The fact that fα is functional follows from the IH, since we know that
fβ ¹ γ = fγ for all γ < β.

Let β < α. Then

fα(β) = fβ+1(β) β + 1 < α, def. of fα

= G(fβ+1 ¹ β) IH
= G(fα ¹ β) intuitively obvious. . . ?

We need do nothing to establish that ∀γ < β < α, fβ ¹ γ = fγ ; it already
holds by the inductive hypothesis.

The argument for the uniqueness of fα is the same as in the previous case.

Now define F (α) = G(fα). We claim that F satisfies the theorem. Note
that F is a functional relation since we have defined it pointwise. Note also
that F ¹ α is a set (by Replacement: F ¹ α = {(β, F (β)) | β ∈ α }). To see
that fα = F ¹ α, consider any β ∈ dom(fα) = dom(F ¹ α) = α; we have
fα(β) = G(fα ¹ β) = G(fβ) = F (β). SDG

5 Cardinals

Definition 5.1. X is equivalent to Y , denoted X ∼ Y (or |X| = |Y |), if there
is a mapping f : X

1-1−−−→
onto

Y .

Definition 5.2. X ≤ Y if there is a mapping f : X
1-1−−→ Y .

Theorem 5.3 (Cantor-Schröder-Bernstein). X ≤ Y ∧ Y ≤ X =⇒ X ∼ Y .

Proof. Suppose f : X
1-1−−→ Y and g : Y

1-1−−→ X are functions implied by the
premises. Let

X0 = X − g(Y )
Xn+1 = (g ◦ f)(Xn)

Xω =
⋃
n∈ω

Xn.

and define

h(a) =

{
f(a) a ∈ Xω

g−1(a) a ∈ X −Xω.
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Note that h is total, since if a ∈ X − Xω, then a 6∈ X0, so a ∈ rng(g) and
g−1(a) is defined.

We claim that h is a one-to-one, onto function from X to Y .

• To show that h is one-to-one, suppose a, b ∈ X and h(a) = h(b). If
a, b ∈ Xω, then f(a) = f(b), so a = b since f is one-to-one. If a, b 6∈ Xω,
then g−1(a) = g−1(b); applying g to both sides yields a = b. So, without
loss of generality, suppose a ∈ Xω and b 6∈ Xω, f(a) = g−1(b); we claim
this case is impossible. Applying g to both sides yields g(f(a)) = b; but
since a ∈ Xω then b is also, a contradiction.

• Now we show h is onto. Let b ∈ Y , and let f(Xω) = Yω. If b ∈ Yω,
then it is in the image of h, since h(Xω) = f(Xω) = Yω. Otherwise,
consider g(b). g(b) 6∈ Xω; if it were, g(b) ∈ Xn for some n, so we would
have g(b) = g(f(q)) for some q ∈ Xn−1. But since g is one-to-one, this
implies b = f(q), that is, b ∈ Yω, a contradiction. Therefore, h(g(b)) =
g−1(g(b)) = b.

SDG

Definition 5.4. X < Y if X ≤ Y and Y 6≤ X.

Theorem 5.5 (Cantor diagonal). For every X, there exists a Y such that
X < Y .

Proof. Claim: X < P(X). Let f : X → P(X), and define

a = { b ∈ X | b 6∈ f(b) }.

Note that a ∈ P(X). We claim that a 6∈ rng(f). If it were, there would be some
c ∈ X with f(c) = a; is c ∈ f(c)? If it is, it isn’t; if it isn’t, it is. So there. f is
not onto.

Note that X ≤ P(X), since f(a) = {a} is a one-to-one mapping.
If P(X) ≤ X, by Cantor-Schröder-Bernstein there would be a one-to-one,

onto map between them, but we have shown that any mapping X → P(X) is
not onto. Therefore, X < P(X). SDG

Remark. Why is this called a diagonal argument? Note that P(X) ∼ 2X (where
XY , also sometimes written Y X, denotes the set of functions from Y to X). In
particular, if Z ⊆ X, we set Z ∈ P(X) to the indicator function

gZ(a) =

{
1 a ∈ Z

0 a 6∈ Z.

In the special case that X ∼ ω, if we assume there exists a 1-1, onto mapping
from X to P(X), we can make a table of the indicator functions to which each
element of X is sent, as follows:
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x0 x1 x2 x3 . . .
x0 1 0 1 1
x1 0 1 0 1
x2 0 0 0 1
x3 1 0 0 0
...

. . .

The ith row is the indicator function describing the subset to which xi is sent.
Now we simply note that the argument in the above proof corresponds to picking
out the diagonal elements (here 1, 1, 0, 0, . . . ), flipping them (0, 0, 1, 1, . . . ), and
noting that the resulting sequence cannot be a row of the table.

Definition 5.6. κ is a cardinal iff κ is an ordinal such that α 6∼ κ for all α ∈ κ.

Remark. A cardinal κ is an initial ordinal—the smallest ordinal having its car-
dinality.

Exercise: show that every natural number is a cardinal, and that ω is a
cardinal (ω is the first infinite cardinal).

Remark. By Theorem 5.5, we know that ω < P(ω). A natural question arises:
is there some X ⊆ P(ω) for which ω < X < P(ω)? This is an interesting
question, especially given that it can be shown that R ∼ P(ω). Hilbert thought
this question so important that he made it the very first problem in his famous
1900 list.

Cantor hypothesized that there does not exist such an X; this hypothesis
is known as the continuum hypothesis (CH). This is a reasonable hypothesis,
especially given the establishment of various special cases, such as the fact that
for all X ⊆ R, if X is closed, then it is not the case that ω < X < R (Cantor-
Bendixson).

It turns out that the continuum hypothesis is independent of ZF: Gödel in
1939 showed that the consistency of ZF implies the consistency of ZF + AC
+ CH; but Cohen showed in 1963 that the consistency of ZF also implies the
consistency of ZF + AC + ¬ CH.
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