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Definition 5.7 (Well-ordering principle). For every set X, there exists a bijec-
tion f : α

1-1−−−→
onto

X for some ordinal α.

Remark. In other words, the well-ordering principle states that every set X can
be well-ordered, since there is a 1-1 projection from some ordinal onto X.

Definition 5.8 (Axiom of Choice). For every set X which is a collection of
nonempty sets, there exists a function f with dom(f) = X and for every y ∈ X,
f(y) ∈ y.

Remark. f is a “choice function” which chooses one element of each element of
X.

Theorem 5.9. The well-ordering principle and axiom of choice are equivalent.

Proof. (WOP =⇒ AC) Suppose X is a collection of nonempty sets. Then
let Z =

⋃
X. By the well-ordering principle, there is some ordinal δ and some

function g for which
Z = { g(γ) | γ < δ }.

But then let f : X → Z be defined by f(y) = g(β) where β is the least ordinal
for which g(β) ∈ y. By definition, dom(f) = X and f(y) ∈ y for every y ∈ X.
To see that f is well-defined, just note that y ⊆ Z and g is onto.

(AC =⇒ WOP) Let X be a set and define

Z = P(X)− {∅},

which is clearly a collection of nonempty sets. Let f be a choice function for Z.
Then define

G(β) = f
(
X − {G(γ) | γ < β }),

which is clearly 1-1. Then for some δ, we have {G(β) | β < δ } = X; otherwise,
G would be a 1-1 function from the ordinals into X, and the ordinals would be
a set (by the Replacement Axiom under G−1 applied to X), a contradiction.

Therefore G ¹ δ is a bijection from δ to X. SDG

Definition 5.10. The cardinality of X, denoted |X|, is the least β for which
there exists an f : β

1-1−−−→
onto

X.

Remark. It is easy to see that the cardinality of any set is a cardinal (the proof
is left as an exercise for the reader).

Note that we require the Axiom of Choice/Well Ordering Principle for the
cardinality operator | − | to be well-defined.

Theorem 5.11. For every cardinal κ, there exists a cardinal λ with κ < λ.

13



Proof. This follows from Cantor’s theorem, since κ < 2κ. SDG

Corollary 5.12. It follows that the class of cardinals is a proper class. For if
there were a set X of all cardinals, then

⋃
X = Ord would be a set.

Remark. The proof of Theorem 5.11 implicitly relied on the Axiom of Choice
in its use of cardinality. We can also supply an alternative proof that does not
use the Axiom of Choice:

Proof. Let κ be a cardinal and consider an ordinal λ > κ. If there is a 1-1
map from λ to κ, it defines a well-ordering on a subset of κ. However, the class
of well-orderings on subsets of κ form a set: a well-ordering on any particular
subset z ∈ P(κ) is just an element of the set P(z × z), so by the axioms of
replacement and restriction we may form the set of all such well-orderings.

Therefore, there cannot exist a 1-1 map from every ordinal larger than κ
into κ; otherwise the ordinals would form a set.

So, choose the least ordinal for which there does not exist a 1-1 map into κ;
this is the next cardinal after κ, denoted κ+. SDG

Definition 5.13. By transfinite recursion, we define

ℵ0 = ω

ℵα+1 = ℵ+
α

ℵλ =
⋃

β<λ

ℵβ when lim(λ).

Remark. We note that ℵλ is a cardinal: suppose there is some f : ℵλ
1-1−−→ γ,

for some γ < ℵλ. Then for some β < λ, γ < ℵβ . But then f ¹ ℵβ+1 is a 1-1
function from ℵβ+1 into a subset of ℵβ , which is a contradiction by defition of
ℵβ+1.

Definition 5.14. f : Ord → Ord is a normal function iff f is order-preserving
and continuous at limits (that is, f(λ) = supβ<λ(f(β)) for λ a limit ordinal).

Theorem 5.15. Every normal function has arbitrarily large fixed points.

Proof. Let f be a normal function, and pick any α. Define

β0 = α

βn+1 = f(βn)
β = sup

n∈ω
βn.

Note that since f is order-preserving, β0 ≤ β1. Then we have

f(β) = sup
n∈ω

(f(βn)) f is continuous

= sup
n∈ω

{βn+1} defn. of β

= sup
n∈ω

{βn} β0 ≤ β1

= β defn. of β
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Hence β is a fixed point of f which is at least α. SDG

Remark. Note that ℵ(−) is a normal function; hence, there are arbitrarily large
ordinals γ with γ = ℵγ !

Definition 5.16 (Cofinality).

• X ⊆ α is cofinal in α iff sup(X) = α.

• A map f : β → α is a cofinal map iff rng f is cofinal in α.

• The cofinality of α, denoted cf(α), is the least β for which there exists a
cofinal map f : β → α.

Remark. For example, cf(ω) = cf(ω + ω) = cf(ℵω) = ω.
Note that all the fixed points constructible by the method in the proof of

Theorem 5.15 have cofinality ω. This begs the question of whether there exist
fixpoints with greater cofinality.

Exercise: show that if α > 0 is a limit ordinal, then cf(α) is a cardinal.
From now on when discussion cofinality we assume that any ordinals men-

tioned are nonzero limit ordinals. κ and λ will conventionally refer to cardinals.

Definition 5.17.

• κ is regular iff cf(κ) = κ; otherwise it is singular.

• κ is a limit cardinal iff λ < κ =⇒ λ+ < κ.

• κ is a strong limit cardinal iff λ < κ =⇒ 2λ < κ.

• κ is weakly inaccessible iff it is a regular limit cardinal.

• κ is (strongly) inaccessible iff it is a regular strong limit cardinal,

Remark. To look ahead, we will show that if θ is strongly inaccessible, then
〈Vθ, ε ¹ Vθ〉 |= ZFC.

The SI axiom asserts that there exists a strongly inaccessible cardinal; this
axiom cannot be derived in ZFC.

Definition 5.18 (Cardinal arithmetic).

κ + λ = |κ× {0} ∪ λ× {1}|
κ× λ = |κ× λ|.

Theorem 5.19 (Cardinal arithmetic is trivial). For all κ, λ ≥ ω, κ × λ =
κ + λ = max(κ, λ).

Proof. We begin by defining a canonical map Γ : Ord×Ord → Ord. In particu-
lar, define (α, β) ≺ (γ, δ) iff either max(α, β) < max(γ, δ), or the max’s are equal
and (α, β) is lexicographically smaller than (γ, δ). This defines a well-ordering
on Ord×Ord. Then we can define

Γ(α, β) = δ, 〈δ, ε〉 ' Init(Ord×Ord, (α, β),≺).
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We claim that Γ[κ × κ] = κ for every infinite κ, which we show by transfinite
induction.

For the base case, we note that Γ[ω×ω] = ω, which is left as an exercise for
the reader.

In the inductive case, let κ be the least cardinal greater than ω such that
Γ[κ × κ] 6= κ. Then for some α, β ∈ κ, Γ(α, β) = κ. Choose δ so max(α, β) <
δ < κ. Now, (δ, δ) determines an initial segment of Ord × Ord which contains
(α, β), so Γ[δ × δ] ⊃ κ, and hence |δ × δ| ≥ κ. However, by minimality of κ,
|δ ∗ δ| = |δ| · |δ| = |δ| < κ, a contradiction. SDG
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