Lecture 7: The Real Line

February 9, 2009

6 The Real Line

Definition 6.1. Let $(\mathbb{Q},<)$ denote the rational numbers with the usual ordering. We define δ to be a formula of first-order logic which expresses the fact that \mathbb{Q} is a dense linear order without endpoints. (Actually translating this into first-order logic is left as an exercise for the reader.)

Definition 6.2. A partial isomorphism of orders is a map which is an isomorphism of its domain and range. That is, $f: C \rightarrow D$ is a partial isomorphism if for every $e, e^{\prime} \in C, e \leq_{C} e^{\prime} \Longrightarrow f(e) \leq_{D} f\left(e^{\prime}\right)$ whenever $e, e^{\prime} \in \operatorname{dom}(f)$.

Definition 6.3. A set P of maps from C to D has the back-and-forth property iff

- For every $f \in P$ and $c \in C$, there is some $g \in P$ such that $f \subseteq g$ and $c \in \operatorname{dom}(g)$. (This is the "forth" part.)
- For every $f \in P$ and $d \in D$, there is some $g \in P$ such that $f \subseteq g$ and $d \in \operatorname{rng}(g)$. (You guessed it, the "back" part.)

Definition 6.4. C and D are partially isomorphic, denoted $C \cong_{P} D$ iff there is a nonempty set P of partial isomorphisms between C and D which has the back-and-forth property.

Remark. Note that the existence of a partial isomorphism between C and D does not, by itself, imply that C and D are partially isomorphic.

Lemma 6.5. If $C, D \models \delta$, then $C \cong_{P} D$.
Proof. Define P to be the set of order-preserving maps f for which $\operatorname{dom}(f)$ is finite, $\operatorname{dom}(f) \subseteq C$, and $\operatorname{rng}(f) \subseteq D$.
P is nonempty, because any singleton map from some element $c \in C$ to any element $d \in D$ is trivially order-preserving.

To see that P has the "forth" property, suppose $f \in P$ and $c \in C-\operatorname{dom}(f)$. Now suppose $c<\min (\operatorname{dom}(f))$, which exists since $\operatorname{dom}(f)$ is finite. Then, since D has no endpoints, there exists some $d \in D$ for which $d<f(\min (\operatorname{dom}(f)))$. Take $g=f \cup(c, d) ; g$ is order-preserving so $g \in P$. The case when $c>$ $\max (\operatorname{dom}(f))$ is similar. Otherwise, let c_{1} be the greatest element of $\operatorname{dom}(f)$ less than c, and c_{2} the least element of $\operatorname{dom}(f)$ greater than c; since D is dense, there is some $d \in D$ for which $f\left(c_{1}\right)<d<f\left(c_{2}\right)$. Again, take $g=f \cup(c, d)$; then $g \in P$.

The proof that P has the "back" property is similar, and uses the fact that $C \models \delta$.

Remark. We note that there are partially isomorphic orders which are not isomorphic-in particular, by the previous lemma, $\mathbb{Q} \cong_{P} \mathbb{R}$, but we know $\mathbb{Q} \not \not 二 \mathbb{R}$, since they have different cardinality.

Theorem 6.6 (Cantor's back-and-forth theorem). If the orders C and D are partially isomorphic and $\operatorname{card}(C)=\operatorname{card}(D)=\aleph_{0}$, then $C \cong D$.

Remark. By saying C is an order, we mean it is a pair $\left\langle X,<_{C}\right\rangle$, and define $\operatorname{card}(C)=\operatorname{card}(X)$.

Proof. Let P be the set of partial isomorphisms witnessing the fact that C and D are partially isomorphic. Since C and D are countable, we may enumerate them as

$$
\begin{aligned}
C & =\left\{c_{0}, c_{1}, c_{2}, \ldots\right\} \\
D & =\left\{d_{0}, d_{1}, d_{2}, \ldots\right\}
\end{aligned}
$$

Pick any $f_{-1} \in P$, and enlarge it to f_{0} such that $c_{0} \in \operatorname{dom}\left(f_{0}\right) ; f_{0} \in P$ since P has the forth property.

Now we choose $f_{1}, f_{2}, \cdots \in P$ as follows. At stage $2 n+1$, pick $f_{2 n+1}$ to extend $f_{2 n}$ with $d_{n} \in \operatorname{rng}\left(f_{2 n+1}\right)$; at stage $2 n+2$, pick $f_{2 n+2}$ to extend $f_{2 n+1}$ with $c_{n} \in \operatorname{dom}\left(f_{2 n+2}\right)$.

Finally, let $f=\bigcup_{i \in \omega} f_{i} . f$ is a function, since $f_{0} \subseteq f_{1} \subseteq f_{2} \subseteq \ldots$. Also, $\operatorname{dom}(f)=C$ and $\operatorname{rng}(f)=D$ by construction. Finally, f is order-preserving, since if $c_{i}<_{C} c_{j}$, then $c_{i}, c_{j} \in \operatorname{dom}\left(f_{2 \max (i, j)}\right)$, and all the f_{k} are orderpreserving. Therefore, f is an isomorphism.

Corollary 6.7. For all orders A and B, if $\operatorname{card}(A)=\operatorname{card}(B)=\aleph_{0}$ and $A \models \delta$ and $B \models \delta$, then $A \cong B$.

Proof. This follows immediately from Lemma 6.5 and Theorem 6.6.
Remark. Note that there are $C, D \models \delta$ where $\operatorname{card}(C)=\operatorname{card}(D)=2^{\aleph_{0}}$ but $C \nsubseteq D$. For example, take $C=\mathbb{R}$ and $D=\mathbb{R}-(\operatorname{Irr} \cap[0,1])$, where Irr denotes the set of irrational numbers. So δ only categorizes sets of cardinality \aleph_{0}.

Exercise: show that for every $\kappa>\aleph_{0}$, there are 2^{κ} pairwise non-isomorphic orders A of cardinality κ ???

Definition 6.8. For a language L, we write $A \equiv_{L} B$ to mean " A and B can't be distinguished by sentences of L," that is, for all $\varphi \in L, A \models \varphi \Longleftrightarrow B \models \varphi$.

Remark. $L_{\infty \omega}$ is the maximal language one gets by allowing application of boolean operations (Λ, \bigvee) to sets of first-order formulas. In other words, $L_{\infty \omega}$ allows infinite conjunction and disjunctions. In general, $L_{\kappa \omega}$ is the language which allows taking the conjunction or disjunction of sets of formulas up to cardinality κ.

Theorem 6.9 (Karp). If $A \cong_{P} B$ then $A \equiv_{L_{\infty} \omega}$.

Remark. The proof is omitted. We note that this immediately implies that $\mathbb{Q} \equiv \sum_{\infty_{\infty}} \mathbb{R}$! So we need better tools to distinguish \mathbb{Q} from \mathbb{R}. What is true about \mathbb{R} that isn't true about \mathbb{Q} ?

- \mathbb{R} is order-complete; that is, every nonempty bounded set of reals has a least upper bound. This is clearly not true about \mathbb{Q}, as noted by the ancient Greeks.
- \mathbb{R} is seperable, that is, there exists a countable subset which is dense in \mathbb{R} (for example, \mathbb{Q}).

So, let γ denote the sentence whose interpretation is " \mathbb{R} is a complete, separable, dense linear order without endpoints."

We can express γ in second-order logic. In particular, to express the fact that a predicate X corresponds to a countable subset of its domain, we can write
$\exists S . S$ is $1-1$ and almost onto on X, and X, S satisfies induction.
where "almost onto" means that $|X-\operatorname{rng}(S)|=1$, and " X, S satisfies induction" means that

$$
\forall Y \cdot Y(0) \wedge(Y(n) \wedge S(n, m) \Longrightarrow Y(m)) \Longrightarrow(\forall n \cdot X(n) \Longrightarrow Y(n))
$$

Theorem 6.10. If $A, B \models \gamma$, then $A \cong B$.
Proof. Let \mathbb{Q}^{A} and \mathbb{Q}^{B} be countable, linearly ordered subsets dense in A and B, respectively. Since \mathbb{Q}^{A} and \mathbb{Q}^{B} are dense in A and B, they are dense as well. Also, since A and B have no endpoints, neither do \mathbb{Q}^{A} and \mathbb{Q}^{B}. Then $\mathbb{Q}^{A}, \mathbb{Q}^{B} \models \delta$, and by Corollary $6.7, \mathbb{Q}^{A} \cong \mathbb{Q}^{B}$.

Now, for every $a \in A$, form the set

$$
\operatorname{lc}(a)=\left\{b \in \mathbb{Q}^{A} \mid b<_{A} a\right\} .
$$

(lc (a) corresponds to the lower Dedekind cut for a.) Then define

$$
\operatorname{DC}(A)=\{\operatorname{lc}(a) \mid a \in A\}
$$

ordered by \subseteq. Then we claim that $\langle A,<\rangle \cong\langle\mathrm{DC}(A), \subseteq\rangle \cong\langle\mathrm{DC}(B), \subseteq\rangle \cong$ $\langle B,<\rangle$.

First, note that lc is an isomorphism from $(A,<)$ to $\langle\mathrm{DC}(A), \subseteq\rangle$.
Now we must exhibit an isomorphism between $\langle\mathrm{DC}(A), \subseteq\rangle$ and $\langle\mathrm{DC}(B), \subseteq\rangle$. Let $f: \mathbb{Q}^{A} \rightarrow \mathbb{Q}^{B}$ be an isomorphism. Then define a map $F: \mathrm{DC}(A) \rightarrow \mathrm{DC}(B)$ which sends X to $f[X]$. We must show that F is well-defined: it is not immediate that $f[\operatorname{lc}(a)] \in \mathrm{DC}(B)$. Note that there must be some $a^{\prime} \in \mathbb{Q}^{A}$ greater than a. Moreover, since f is order-preserving, $f\left(a^{\prime}\right)$ is an upper bound of $f[\operatorname{lc}(a)]$. Therefore, since B is order-complete, there exists a least upper bound $b \in B$ of $f[\operatorname{lc}(a)]$. We claim that $f[\operatorname{lc}(a)]=\operatorname{lc}(b)$. First, if $x \in \operatorname{lc}(a)$, then $f(x) \in \operatorname{lc}(b)$ since $\operatorname{lc}(b)$ contains all elements of \mathbb{Q}^{B} less than b. If $y \in \operatorname{lc}(b)$, then there must
be some $x \in \operatorname{lc}(a)$ for which $f(x)=y$; otherwise, since f is onto, there would have to be some $x^{\prime} \geq a$ for which $f\left(x^{\prime}\right)=y$, but this would contradict the fact that f is order-preserving.
F is order-preserving since $X \subseteq Y \Longrightarrow f[X] \subseteq f[Y]$.
We can similarly define $F^{-1}: \overline{\mathrm{DC}}(B) \rightarrow \mathrm{DC}(\bar{A})$ which sends X to $f^{-1}[X]$; a parallel argument shows that F^{-1} is well-defined and order-preserving.

Finally, we note that since f is an injection, $f^{-1}[f[X]]=X$, so F and F^{-1} are inverse, and therefore F is an isomorphism.

Remark. lc in the preceding proof is an injection from \mathbb{R} to $\mathcal{P}(\mathbb{Q})$; therefore, $\operatorname{card}(\mathbb{R}) \leq 2^{\aleph_{0}}$.

Definition 6.11 (Cantor set). Let $C=\{0,2\}^{\omega}$. Then $|C|=2^{\aleph_{0}}$.
Now for each $f \in C$, form the sum

$$
\sum_{i=1}^{\omega} f(i) \cdot 3^{-i}
$$

This gives the set of real numbers whose "trinary" expansions omit the digit 1.
Remark. We can also construct this set by taking $D_{0}=[0,1], D_{1}$ to be D_{0} without the middle $1 / 3, D_{2}$ to be D_{1} with the middle $1 / 3$ removed from each of its subintervals, and so on recursively. Then $C=\bigcap_{n \in \omega} D_{n}$.

Note that C is a closed set with maximal cardinality which is nowhere dense!
If each element of C defines a distinct real number, then we see that $2^{\aleph_{0}} \leq$ $\operatorname{card}(\mathbb{R})$. Since we showed in the proof of Theorem 6.10 that $\operatorname{card}(\mathbb{R}) \leq 2^{\aleph_{0}}$, in fact $\operatorname{card}(\mathbb{R})=2^{\aleph_{0}}$.

Definition 6.12. A subset of \mathbb{R} is open if it is a union of open intervals. A subset is closed if it is the complement of an open set.

Remark. Open sets form a topology on \mathbb{R}, since they include \mathbb{R} and \emptyset and are closed under arbitrary unions and finite intersections.

Note that \mathbb{R} has a countable basis, namely, the set of open intervals with rational endpoints.
Remark. Consider $|\mathcal{P}(\mathbb{R})|=2^{2^{\aleph_{0}}}>2^{\aleph_{0}}$. That's a lot of sets! The CH states that every element of $\mathcal{P}(\mathbb{R})$ is either countable or has the same cardinality as \mathbb{R}, but it seems difficult to get a handle on something quantifying over such a large set. Perhaps we can make better progress if we look at simpler classes of subsets of \mathbb{R}, for example, open sets. There are only $2^{\aleph_{0}}$ open sets, since each is a countable union of intervals from the countable basis of \mathbb{R}.

