6 The Real Line

Definition 6.1. Let $(\mathbb{Q}, <)$ denote the rational numbers with the usual ordering. We define δ to be a formula of first-order logic which expresses the fact that \mathbb{Q} is a dense linear order without endpoints. (Actually translating this into first-order logic is left as an exercise for the reader.)

Definition 6.2. A partial isomorphism of orders is a map which is an isomorphism of its domain and range. That is, $f: C \to D$ is a partial isomorphism if for every $e, e' \in C$, $e \leq_C e' \implies f(e) \leq_D f(e')$ whenever $e, e' \in \text{dom}(f)$.

Definition 6.3. A set P of maps from C to D has the back-and-forth property iff

- For every $f \in P$ and $c \in C$, there is some $g \in P$ such that $f \subseteq g$ and $c \in \text{dom}(g)$. (This is the "forth" part.)
- For every $f \in P$ and $d \in D$, there is some $g \in P$ such that $f \subseteq g$ and $d \in \operatorname{rng}(g)$. (You guessed it, the "back" part.)

Definition 6.4. *C* and *D* are *partially isomorphic*, denoted $C \cong_P D$ iff there is a nonempty set *P* of partial isomorphisms between *C* and *D* which has the back-and-forth property.

Remark. Note that the existence of a partial isomorphism between C and D does *not*, by itself, imply that C and D are partially isomorphic.

Lemma 6.5. If $C, D \models \delta$, then $C \cong_P D$.

Proof. Define P to be the set of order-preserving maps f for which dom(f) is finite, dom(f) $\subseteq C$, and rng(f) $\subseteq D$.

P is nonempty, because any singleton map from some element $c \in C$ to any element $d \in D$ is trivially order-preserving.

To see that P has the "forth" property, suppose $f \in P$ and $c \in C - \operatorname{dom}(f)$. Now suppose $c < \min(\operatorname{dom}(f))$, which exists since $\operatorname{dom}(f)$ is finite. Then, since D has no endpoints, there exists some $d \in D$ for which $d < f(\min(\operatorname{dom}(f)))$. Take $g = f \cup (c, d)$; g is order-preserving so $g \in P$. The case when $c > \max(\operatorname{dom}(f))$ is similar. Otherwise, let c_1 be the greatest element of $\operatorname{dom}(f)$ less than c, and c_2 the least element of $\operatorname{dom}(f)$ greater than c; since D is dense, there is some $d \in D$ for which $f(c_1) < d < f(c_2)$. Again, take $g = f \cup (c, d)$; then $g \in P$.

The proof that P has the "back" property is similar, and uses the fact that $C \models \delta$.

Remark. We note that there are partially isomorphic orders which are not isomorphic—in particular, by the previous lemma, $\mathbb{Q} \cong_P \mathbb{R}$, but we know $\mathbb{Q} \not\cong \mathbb{R}$, since they have different cardinality.

Theorem 6.6 (Cantor's back-and-forth theorem). If the orders C and D are partially isomorphic and $\operatorname{card}(C) = \operatorname{card}(D) = \aleph_0$, then $C \cong D$.

Remark. By saying C is an order, we mean it is a pair $\langle X, \langle C \rangle$, and define $\operatorname{card}(C) = \operatorname{card}(X)$.

Proof. Let P be the set of partial isomorphisms witnessing the fact that C and D are partially isomorphic. Since C and D are countable, we may enumerate them as

$$C = \{c_0, c_1, c_2, \dots\}$$
$$D = \{d_0, d_1, d_2, \dots\}.$$

Pick any $f_{-1} \in P$, and enlarge it to f_0 such that $c_0 \in \text{dom}(f_0)$; $f_0 \in P$ since P has the forth property.

Now we choose $f_1, f_2, \dots \in P$ as follows. At stage 2n + 1, pick f_{2n+1} to extend f_{2n} with $d_n \in \operatorname{rng}(f_{2n+1})$; at stage 2n + 2, pick f_{2n+2} to extend f_{2n+1} with $c_n \in \operatorname{dom}(f_{2n+2})$.

Finally, let $f = \bigcup_{i \in \omega} f_i$. f is a function, since $f_0 \subseteq f_1 \subseteq f_2 \subseteq \ldots$. Also, dom(f) = C and rng(f) = D by construction. Finally, f is order-preserving, since if $c_i <_C c_j$, then $c_i, c_j \in \text{dom}(f_{2\max(i,j)})$, and all the f_k are orderpreserving. Therefore, f is an isomorphism.

Corollary 6.7. For all orders A and B, if $card(A) = card(B) = \aleph_0$ and $A \models \delta$ and $B \models \delta$, then $A \cong B$.

Proof. This follows immediately from Lemma 6.5 and Theorem 6.6.

SDG

Remark. Note that there are $C, D \models \delta$ where $\operatorname{card}(C) = \operatorname{card}(D) = 2^{\aleph_0}$ but $C \not\cong D$. For example, take $C = \mathbb{R}$ and $D = \mathbb{R} - (Irr \cap [0, 1])$, where *Irr* denotes the set of irrational numbers. So δ only categorizes sets of cardinality \aleph_0 .

Exercise: show that for every $\kappa > \aleph_0$, there are 2^{κ} pairwise non-isomorphic orders A of cardinality κ ???

Definition 6.8. For a language L, we write $A \equiv_L B$ to mean "A and B can't be distinguished by sentences of L," that is, for all $\varphi \in L$, $A \models \varphi \iff B \models \varphi$.

Remark. $L_{\infty\omega}$ is the maximal language one gets by allowing application of boolean operations (Λ, \bigvee) to sets of first-order formulas. In other words, $L_{\infty\omega}$ allows infinite conjunction and disjunctions. In general, $L_{\kappa\omega}$ is the language which allows taking the conjunction or disjunction of sets of formulas up to cardinality κ .

Theorem 6.9 (Karp). If $A \cong_P B$ then $A \equiv_{L_{\infty\omega}}$.

Remark. The proof is omitted. We note that this immediately implies that $\mathbb{Q} \equiv_{L_{\infty\omega}} \mathbb{R}!$ So we need better tools to distinguish \mathbb{Q} from \mathbb{R} . What is true about \mathbb{R} that isn't true about \mathbb{Q} ?

- \mathbb{R} is *order-complete*; that is, every nonempty bounded set of reals has a least upper bound. This is clearly not true about \mathbb{Q} , as noted by the ancient Greeks.
- \mathbb{R} is *seperable*, that is, there exists a countable subset which is dense in \mathbb{R} (for example, \mathbb{Q}).

So, let γ denote the sentence whose interpretation is " \mathbb{R} is a complete, separable, dense linear order without endpoints."

We can express γ in second-order logic. In particular, to express the fact that a predicate X corresponds to a countable subset of its domain, we can write

 $\exists S.S$ is 1-1 and almost onto on X, and X, S satisfies induction.

where "almost onto" means that $|X - \operatorname{rng}(S)| = 1$, and "X, S satisfies induction" means that

$$\forall Y.Y(0) \land (Y(n) \land S(n,m) \implies Y(m)) \implies (\forall n.X(n) \implies Y(n)).$$

Theorem 6.10. If $A, B \models \gamma$, then $A \cong B$.

Proof. Let \mathbb{Q}^A and \mathbb{Q}^B be countable, linearly ordered subsets dense in A and B, respectively. Since \mathbb{Q}^A and \mathbb{Q}^B are dense in A and B, they are dense as well. Also, since A and B have no endpoints, neither do \mathbb{Q}^A and \mathbb{Q}^B . Then $\mathbb{Q}^A, \mathbb{Q}^B \models \delta$, and by Corollary 6.7, $\mathbb{Q}^A \cong \mathbb{Q}^B$.

Now, for every $a \in A$, form the set

$$\operatorname{lc}(a) = \{ b \in \mathbb{Q}^A \mid b <_A a \}.$$

(lc(a) corresponds to the lower Dedekind cut for a.) Then define

$$DC(A) = \{ lc(a) \mid a \in A \},\$$

ordered by \subseteq . Then we claim that $\langle A, \langle \rangle \cong \langle \mathrm{DC}(A), \subseteq \rangle \cong \langle \mathrm{DC}(B), \subseteq \rangle \cong \langle B, \langle \rangle$.

First, note that lc is an isomorphism from (A, <) to $(DC(A), \subseteq)$.

Now we must exhibit an isomorphism between $\langle DC(A), \subseteq \rangle$ and $\langle DC(B), \subseteq \rangle$. Let $f : \mathbb{Q}^A \to \mathbb{Q}^B$ be an isomorphism. Then define a map $F : DC(A) \to DC(B)$ which sends X to f[X]. We must show that F is well-defined: it is not immediate that $f[lc(a)] \in DC(B)$. Note that there must be some $a' \in \mathbb{Q}^A$ greater than a. Moreover, since f is order-preserving, f(a') is an upper bound of f[lc(a)]. Therefore, since B is order-complete, there exists a least upper bound $b \in B$ of f[lc(a)]. We claim that f[lc(a)] = lc(b). First, if $x \in lc(a)$, then $f(x) \in lc(b)$ since lc(b) contains all elements of \mathbb{Q}^B less than b. If $y \in lc(b)$, then there must be some $x \in lc(a)$ for which f(x) = y; otherwise, since f is onto, there would have to be some $x' \ge a$ for which f(x') = y, but this would contradict the fact that f is order-preserving.

F is order-preserving since $X \subseteq Y \implies f[X] \subseteq f[Y]$.

We can similarly define $F^{-1} : DC(B) \to DC(A)$ which sends X to $f^{-1}[X]$; a parallel argument shows that F^{-1} is well-defined and order-preserving.

Finally, we note that since f is an injection, $f^{-1}[f[X]] = X$, so F and F^{-1} are inverse, and therefore F is an isomorphism.

Remark. Ic in the preceding proof is an injection from \mathbb{R} to $\mathcal{P}(\mathbb{Q})$; therefore, card $(\mathbb{R}) \leq 2^{\aleph_0}$.

Definition 6.11 (Cantor set). Let $C = \{0, 2\}^{\omega}$. Then $|C| = 2^{\aleph_0}$. Now for each $f \in C$, form the sum

$$\sum_{i=1}^{\omega} f(i) \cdot 3^{-i}.$$

This gives the set of real numbers whose "trinary" expansions omit the digit 1.

Remark. We can also construct this set by taking $D_0 = [0, 1]$, D_1 to be D_0 without the middle 1/3, D_2 to be D_1 with the middle 1/3 removed from each of its subintervals, and so on recursively. Then $C = \bigcap_{n \in \omega} D_n$.

Note that C is a closed set with maximal cardinality which is nowhere dense! If each element of C defines a distinct real number, then we see that $2^{\aleph_0} \leq \operatorname{card}(\mathbb{R})$. Since we showed in the proof of Theorem 6.10 that $\operatorname{card}(\mathbb{R}) \leq 2^{\aleph_0}$, in fact $\operatorname{card}(\mathbb{R}) = 2^{\aleph_0}$.

Definition 6.12. A subset of \mathbb{R} is *open* if it is a union of open intervals. A subset is *closed* if it is the complement of an open set.

Remark. Open sets form a *topology* on \mathbb{R} , since they include \mathbb{R} and \emptyset and are closed under arbitrary unions and finite intersections.

Note that \mathbb{R} has a countable basis, namely, the set of open intervals with rational endpoints.

Remark. Consider $|\mathcal{P}(\mathbb{R})| = 2^{2^{\aleph_0}} > 2^{\aleph_0}$. That's a lot of sets! The CH states that every element of $\mathcal{P}(\mathbb{R})$ is either countable or has the same cardinality as \mathbb{R} , but it seems difficult to get a handle on something quantifying over such a large set. Perhaps we can make better progress if we look at simpler classes of subsets of \mathbb{R} , for example, open sets. There are only 2^{\aleph_0} open sets, since each is a countable union of intervals from the countable basis of \mathbb{R} .