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6 The Real Line

Definition 6.1. Let (Q, <) denote the rational numbers with the usual order-
ing. We define δ to be a formula of first-order logic which expresses the fact
that Q is a dense linear order without endpoints. (Actually translating this into
first-order logic is left as an exercise for the reader.)

Definition 6.2. A partial isomorphism of orders is a map which is an isomor-
phism of its domain and range. That is, f : C → D is a partial isomorphism if
for every e, e′ ∈ C, e ≤C e′ =⇒ f(e) ≤D f(e′) whenever e, e′ ∈ dom(f).

Definition 6.3. A set P of maps from C to D has the back-and-forth property
iff

• For every f ∈ P and c ∈ C, there is some g ∈ P such that f ⊆ g and
c ∈ dom(g). (This is the “forth” part.)

• For every f ∈ P and d ∈ D, there is some g ∈ P such that f ⊆ g and
d ∈ rng(g). (You guessed it, the “back” part.)

Definition 6.4. C and D are partially isomorphic, denoted C ∼=P D iff there
is a nonempty set P of partial isomorphisms between C and D which has the
back-and-forth property.

Remark. Note that the existence of a partial isomorphism between C and D
does not, by itself, imply that C and D are partially isomorphic.

Lemma 6.5. If C, D |= δ, then C ∼=P D.

Proof. Define P to be the set of order-preserving maps f for which dom(f) is
finite, dom(f) ⊆ C, and rng(f) ⊆ D.

P is nonempty, because any singleton map from some element c ∈ C to any
element d ∈ D is trivially order-preserving.

To see that P has the “forth” property, suppose f ∈ P and c ∈ C−dom(f).
Now suppose c < min(dom(f)), which exists since dom(f) is finite. Then, since
D has no endpoints, there exists some d ∈ D for which d < f(min(dom(f))).
Take g = f ∪ (c, d); g is order-preserving so g ∈ P . The case when c >
max(dom(f)) is similar. Otherwise, let c1 be the greatest element of dom(f)
less than c, and c2 the least element of dom(f) greater than c; since D is dense,
there is some d ∈ D for which f(c1) < d < f(c2). Again, take g = f ∪ (c, d);
then g ∈ P .

The proof that P has the “back” property is similar, and uses the fact that
C |= δ. SDG
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Remark. We note that there are partially isomorphic orders which are not
isomorphic—in particular, by the previous lemma, Q ∼=P R, but we knowQ 6∼= R,
since they have different cardinality.

Theorem 6.6 (Cantor’s back-and-forth theorem). If the orders C and D are
partially isomorphic and card(C) = card(D) = ℵ0, then C ∼= D.

Remark. By saying C is an order, we mean it is a pair 〈X, <C〉, and define
card(C) = card(X).

Proof. Let P be the set of partial isomorphisms witnessing the fact that C and
D are partially isomorphic. Since C and D are countable, we may enumerate
them as

C = {c0, c1, c2, . . . }
D = {d0, d1, d2, . . . }.

Pick any f−1 ∈ P , and enlarge it to f0 such that c0 ∈ dom(f0); f0 ∈ P since P
has the forth property.

Now we choose f1, f2, · · · ∈ P as follows. At stage 2n + 1, pick f2n+1 to
extend f2n with dn ∈ rng(f2n+1); at stage 2n + 2, pick f2n+2 to extend f2n+1

with cn ∈ dom(f2n+2).
Finally, let f =

⋃
i∈ω fi. f is a function, since f0 ⊆ f1 ⊆ f2 ⊆ . . . . Also,

dom(f) = C and rng(f) = D by construction. Finally, f is order-preserving,
since if ci <C cj , then ci, cj ∈ dom(f2 max(i,j)), and all the fk are order-
preserving. Therefore, f is an isomorphism. SDG

Corollary 6.7. For all orders A and B, if card(A) = card(B) = ℵ0 and A |= δ
and B |= δ, then A ∼= B.

Proof. This follows immediately from Lemma 6.5 and Theorem 6.6. SDG

Remark. Note that there are C, D |= δ where card(C) = card(D) = 2ℵ0 but
C 6∼= D. For example, take C = R and D = R− (Irr∩ [0, 1]), where Irr denotes
the set of irrational numbers. So δ only categorizes sets of cardinality ℵ0.

Exercise: show that for every κ > ℵ0, there are 2κ pairwise non-isomorphic
orders A of cardinality κ ???

Definition 6.8. For a language L, we write A ≡L B to mean “A and B can’t
be distinguished by sentences of L,” that is, for all ϕ ∈ L, A |= ϕ ⇐⇒ B |= ϕ.

Remark. L∞ω is the maximal language one gets by allowing application of
boolean operations (

∧
,
∨

) to sets of first-order formulas. In other words, L∞ω

allows infinite conjunction and disjunctions. In general, Lκω is the language
which allows taking the conjunction or disjunction of sets of formulas up to
cardinality κ.

Theorem 6.9 (Karp). If A ∼=P B then A ≡L∞ω .
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Remark. The proof is omitted. We note that this immediately implies that
Q ≡L∞ω

R! So we need better tools to distinguish Q from R. What is true
about R that isn’t true about Q?

• R is order-complete; that is, every nonempty bounded set of reals has a
least upper bound. This is clearly not true about Q, as noted by the
ancient Greeks.

• R is seperable, that is, there exists a countable subset which is dense in R
(for example, Q).

So, let γ denote the sentence whose interpretation is “R is a complete, separable,
dense linear order without endpoints.”

We can express γ in second-order logic. In particular, to express the fact
that a predicate X corresponds to a countable subset of its domain, we can
write

∃S.S is 1-1 and almost onto on X, and X, S satisfies induction.

where “almost onto” means that |X−rng(S)| = 1, and “X, S satisfies induction”
means that

∀Y.Y (0) ∧ (Y (n) ∧ S(n,m) =⇒ Y (m)) =⇒ (∀n.X(n) =⇒ Y (n)).

Theorem 6.10. If A,B |= γ, then A ∼= B.

Proof. Let QA and QB be countable, linearly ordered subsets dense in A and
B, respectively. Since QA and QB are dense in A and B, they are dense as
well. Also, since A and B have no endpoints, neither do QA and QB . Then
QA,QB |= δ, and by Corollary 6.7, QA ∼= QB .

Now, for every a ∈ A, form the set

lc(a) = { b ∈ QA | b <A a }.

(lc(a) corresponds to the lower Dedekind cut for a.) Then define

DC(A) = { lc(a) | a ∈ A },

ordered by ⊆. Then we claim that 〈A,<〉 ∼= 〈DC(A),⊆〉 ∼= 〈DC(B),⊆〉 ∼=
〈B, <〉.

First, note that lc is an isomorphism from (A,<) to 〈DC(A),⊆〉.
Now we must exhibit an isomorphism between 〈DC(A),⊆〉 and 〈DC(B),⊆〉.

Let f : QA → QB be an isomorphism. Then define a map F : DC(A) → DC(B)
which sends X to f [X]. We must show that F is well-defined: it is not immediate
that f [lc(a)] ∈ DC(B). Note that there must be some a′ ∈ QA greater than
a. Moreover, since f is order-preserving, f(a′) is an upper bound of f [lc(a)].
Therefore, since B is order-complete, there exists a least upper bound b ∈ B of
f [lc(a)]. We claim that f [lc(a)] = lc(b). First, if x ∈ lc(a), then f(x) ∈ lc(b)
since lc(b) contains all elements of QB less than b. If y ∈ lc(b), then there must
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be some x ∈ lc(a) for which f(x) = y; otherwise, since f is onto, there would
have to be some x′ ≥ a for which f(x′) = y, but this would contradict the fact
that f is order-preserving.

F is order-preserving since X ⊆ Y =⇒ f [X] ⊆ f [Y ].
We can similarly define F−1 : DC(B) → DC(A) which sends X to f−1[X];

a parallel argument shows that F−1 is well-defined and order-preserving.
Finally, we note that since f is an injection, f−1[f [X]] = X, so F and F−1

are inverse, and therefore F is an isomorphism. SDG

Remark. lc in the preceding proof is an injection from R to P(Q); therefore,
card(R) ≤ 2ℵ0 .

Definition 6.11 (Cantor set). Let C = {0, 2}ω. Then |C| = 2ℵ0 .
Now for each f ∈ C, form the sum

ω∑

i=1

f(i) · 3−i.

This gives the set of real numbers whose “trinary” expansions omit the digit 1.

Remark. We can also construct this set by taking D0 = [0, 1], D1 to be D0

without the middle 1/3, D2 to be D1 with the middle 1/3 removed from each
of its subintervals, and so on recursively. Then C =

⋂
n∈ω Dn.

Note that C is a closed set with maximal cardinality which is nowhere dense!
If each element of C defines a distinct real number, then we see that 2ℵ0 ≤

card(R). Since we showed in the proof of Theorem 6.10 that card(R) ≤ 2ℵ0 , in
fact card(R) = 2ℵ0 .

Definition 6.12. A subset of R is open if it is a union of open intervals. A
subset is closed if it is the complement of an open set.

Remark. Open sets form a topology on R, since they include R and ∅ and are
closed under arbitrary unions and finite intersections.

Note that R has a countable basis, namely, the set of open intervals with
rational endpoints.

Remark. Consider |P(R)| = 22ℵ0
> 2ℵ0 . That’s a lot of sets! The CH states

that every element of P(R) is either countable or has the same cardinality as
R, but it seems difficult to get a handle on something quantifying over such a
large set. Perhaps we can make better progress if we look at simpler classes of
subsets of R, for example, open sets. There are only 2ℵ0 open sets, since each
is a countable union of intervals from the countable basis of R.
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