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8 A digression

Remark. An example of a formula which is not ∆0 is the formula ϕ(x) which
states card(x) = ω, that is,

∃f.(f : ω
1-1−−−→
onto

x). (1)

Note that ∃f is an unbounded quantifier.
Moreover, it is the case that ϕ is not absolute for transitive universes, demon-

strating (by Lemma 7.12) that it is not possible to find any ∆0 formula express-
ing the same property. We will spend the rest of the lecture exploring why.

Definition 8.1. B is an elementary substructure (or elementary submodel) of
A, denoted B ¹ A, iff for all formulas ϕ(x) and b̄ ∈ B,

B |= ϕ[b] ⇐⇒ A |= ϕ[b].

Definition 8.2. A and B are elementarily equivalent, denoted A ≡ B, iff for
all ϕ,

A |= ϕ ⇐⇒ B |= ϕ.

Remark. For example, consider the structures A = 〈ω,<〉 and B = 〈ω − {0}, <〉.
These are isomorphic, and therefore A ≡ B. However, it is not the case that
B ¹ A: for example, if ϕ(x) denotes “x has no predecessor,” then B |= ϕ(1)
but A 6|= ϕ(1). (Also, A � B since A is not a subset of B.)

Lemma 8.3 (Mostowski’s Collapsing Lemma). If A =
〈
A,EA

〉
is a well-

founded extensional model of ZF, then A is isomorphic to a transitive set.

Proof. Suppose
〈
A,EA

〉
is a well-founded, extensional model of ZF . Then

define f : A → V by
f(a) = { f(b) | EA(b, a) }.

(Note that we may recursively define f in this way since
〈
A,EA

〉
is well-

founded.) Then we must show that f [A] is transitive, and that f is an iso-
morphism.

First, we show that f [A] is transitive. Let x ∈ y ∈ f [A]. Then y = f(a) for
some a ∈ A, and y = { f(b) | EA(b, a) }. Therefore, x = f(b) for some b with
EA(b, a), which means that x ∈ f [A].

Now, we must show f is an isomorphism between A and f [A]. Clearly it is
surjective, so we need only show it is structure-preserving. Suppose EA(b, a);
then f(b) ∈ f(a) by definition of f(a). SDG
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Remark. We interrupt this lecture to bring you the following digression within
a digression.

Remark. In the statement of Lemma 8.3, why do we need to state that
A is a well-founded model of ZF? Doesn’t this follow from the axiom of
regularity and the fact that it is a model?

The somewhat surprising answer is: no! “Just because A thinks it is
well-founded. . . ” In fact, we can actually show the following theorem.

Theorem 8.4. If A is an infinite structure with arbitrarily long finite
chains, then there exists a non-well-founded structure B such that B ≡ A.

To prove this theorem, we first need a few more tools.

Theorem 8.5 (Compactness of first-order logic (Gödel)). For any set
of first-order sentences T , if every finite S ⊆ T is satisfiable, then T is
satisfiable.

Remark. Gödel first showed this as a corollary to his completeness theorem
for first-order logic.

Theorem 8.6 (Completeness of first-order logic (Gödel)). For every for-
mula ϕ of first-order logic, if T |= ϕ, then T ` ϕ.

Proof. We prove that Theorem 8.5 is a corollary to Theorem 8.6, by show-
ing the contrapositive. Suppose that T is not satisfiable. Then T |= ϕ∧¬ϕ,
vacuously; so, by Theorem 8.6, T ` ϕ ∧ ¬ϕ. Proofs must be finite, so the
proof must use only a finite set S of formulas in T . Hence S ` ϕ ∧ ¬ϕ,
and by the soundness of first-order logic, S |= ϕ ∧ ¬ϕ. Therefore S is not
satisfiable. SDG

Remark. There are actually at least three other ways to show Theorem 8.5.
One was shown by some guy using structures with constants, or something
like that. One was shown by some other guy using ultraproducts, what-
ever those are (we might see this later in the course). Finally, there are
topological methods involving scary things named for people.

Proof. We are now in a position to prove Theorem 8.4. Suppose A is a
structure with arbitrarily long chains. Now define

T = Th(A) ∪ {E(cn+1, cn) | n ∈ ω },

where E is the relation of A, the ci are new constant symbols, and Th(A) =
{ϕ | A |= ϕ }. Since A contains arbitrarily long finite chains, any finite
subset of T is satisfiable by assigning appropriate elements of A to the ci.
By Theorem 8.5, T is satisfiable, that is, there exists a structure B such
that B |= T . Clearly, B cannot be well-founded, because it contains an
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infinite decreasing chain. Note that A |= ϕ =⇒ B |= ϕ by construction.
The converse is also true, which we can show by contradiction: if B |= ϕ
but A 6|= ϕ, then A |= ¬ϕ, implying that B |= ¬ϕ, a contradiction. Thus,
A ≡ B. SDG

Remark. This means that ZF—even with the Axiom of Regularity—has
non-well-founded models! Note, however, that any infinitely descending
chain in such a model is not represented by an element in the universe.

Consider also the naturals with addition, multiplication, successor, and
zero, ordered by <, which is a well-founded relation. The preceding the-
orem shows that there are models of these axioms which are not well-
founded! Such a model has “non-standard naturals”; each of these have
successors and predecessors which are also non-standard, so each “sprouts”
a “Z-chain”. Similarly, each of the elements in a Z-chain is a+n for some
standard n, a + a must sprout a different Z-chain, and so on. . .

Remark. And now, back to your regularly scheduled digression.

Theorem 8.7 (Löwenheim-Skolem). If A =
〈
A,EA

〉
is a structure (that is, a

set with a binary relation) such that A |= T , then for all countable X ⊆ A, there
is some countably infinite B with X ⊆ B ⊆ A, and B ¹ A.

Proof. (Deferred to a later lecture.) SDG

Remark. With the machinery we have now developed, we can show that equa-
tion (1) is not absolute for all transitive universes—that is, it could be true in
some universe, but not true in some relativization of that universe which is still
a model.

Theorem 8.8. There is some transitive universe M for which

ϕ(x) = ∃f.(f : ω
1-1−−−→
onto

x)

is not absolute.

Proof. Let 〈A,E〉 be a well-founded, extensional model of ZF. By Löwenheim-
Skolem, we can find a countable model of ZF, B, which is an elementary sub-
model of A (and hence well-founded and extensional). Then, by Mostowski, B
is isomorphic to a transitive set C. Since C is a model of ZF, it must contain
some element x satisfying the formula “x = P(ω)”, and it must be the case that

C |= ¬∃f.(f : ω
1-1−−−→
onto

x)

(this is just Cantor’s Theorem). But C is countable, and since C is transitive, x
must be countable also. Hence, “countableness” is not an absolute property. SDG

Remark. This is known as Skolem’s Paradox, and gives additional insight into
the limits of first-order logic to express properties of sets.
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