Lecture 11: The Lowenheim-Skolem Theorem
February 23, 2009

Remark. We now return to prove the Lowenheim-Skolem theorem from the
previous lecture. In fact, we will prove a slightly more general version. But
first, we need a lemma.

Lemma 8.9 (Tarski-Vaught =-criterion). If B C A, and for all b € B and

formulas ©(T,y), A & 3x.p[b] implies that there is a b’ € B such that A |=
[b,b'], then B =< A.

Proof. We show that

B ¢lb] <= Al olb]
for all formulas ¢ by induction on the structure of . Without loss of generality,
we may assume that ¢ does not contain V (we can always translate V into —=3-).

e If  is an atom, this follows from the definition of C on structures.

o If ¢ = ¢1 A g, by the inductive hypothesis we know that B | ¢;[b] <=
A |= p;[b] for i = 1,2. Then it is not hard to see that B satisfies (1 A

©2)[b] = p1[b] A p2[b] if and only if A does.

e The arguments for V and — are similar.

e If o = Jy.0. First, suppose B |= Jy.0[b], and b’ € B witnesses this. Then
B = 0[b,b'], which by the inductive hypothesis implies that A | 6[b, V'],

and hence that A = Jy.0[b].

Conversely, suppose A = Jy.0[b]. By assumption, there is a b’ € B for
which A |= 0[b,0']. But by the induction hypothesis, this shows that
B = b, V'] and hence that B | Jy.0[b).

&

Definition 8.10. Let A be a structure and ¢(Z,y) some formula. Then we
may define a Skolem function f, for which

A Trefe,r] = AE ¢ [ ().
The Skolem function f, picks a satisfier for the formula ¢, assuming one exists.

Theorem 8.11 (Léwenheim-Skolem). If A = <A, EA> is a structure (that is, a
set with a binary relation) such that A |=T, then for all X C A, there is some
B such that X C BC A, B < A, and card(B) = Rg - card(X).

Proof. First, form a set of Skolem functions

F={felpeT}
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We note that F' is countable, since T is (we assume a countable language). We
define X, the Skolem hull of X in A, as follows:

Xo=X
Xi+1:{f(6)|E€Xi andeF}

X, =J X

1EW

In fact, X, is the desired B. That X, < T follows by construction from
the Tarski-Vaught criterion. Clearly X C X, C A. Also, card(X,) > Ny,
since it must satisfy all statements of the form “at least n elements exist”;

card(X,) < Vg - card(X), since it is a countable union of sets with size at most
Ng - card(X). ]

Remark. We now note that the Lowenheim-Skolem Theorem is one half of a
more general observation about the sizes of models.

Theorem 8.12. For any infinite structure A and cardinal k > Rq, there is a
structure B such that B = A and card(B) = k.

Proof. Suppose card(A) = A. If k < A, by Theorem 8.11 we can find some
B < A with card(B) = k, by forming the Skolem hull of some subset of A of
cardinality r; this implies that B = A.

Conversely, suppose £ > A. Let {C, | @ < K} be a set of new constant
symbols. Now consider the set of formulas

T'=Th(A)U{~(Co =Cp) |la< B <k}

Any finite subset of T" is satisfiable by A; hence, by compactness (Theorem 8.5),
T’ is satisfiable by some structure, call it B’. The cardinality of B’ must be at
least k. Also, B’ = A (with respect to the language without the extra constants
Cy), and by Theorem 8.11 we may construct a B < B’ with cardinality x, and
B=A. B4

Remark. For every finite A, on the other hand, there exists some ¢4 such that
B = paifand only if B = A. That is, every finite structure can be characterized
up to isomorphism in first-order logic. We can simply take ¢4 to be a complete
encoding of the relation on A.

Definition 8.13. A theory T is k-categorical iff for all A and B, if card(A) =
card(B) =k and A =T and B ET, then A = B.

Remark. In other words, T is k-categorical if it characterizes its models of
cardinality x up to isomorphism.

For example, Th(Q, <) is Rg-categorical, but not 2%°-categorical, which we
saw in a previous lecture.

There exist T which are not Ng-categorical but are k-categorical for every
k > Ng. There are also trivial examples of T" which are x-categorical for all x
(for example, a set with the empty relation or total relation).
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One might wonder whether there are T" which are Wj-categorical but not
Ns-categorical. The answer, as shown by M. Morley in the 1960’s, is no.

Theorem 8.14 (Morley, 1967). If T is a complete, countable first-order theory,
and T is k-categorical for some k > N, then T is k-categorical for all kK > V.

Remark. One might also wonder whether there is some countable structure A
such that the second-order theory of A is not categorical? This question was
shown by Ajtai to be independent of ZFC.
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