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February 23, 2009

Remark. We now return to prove the Löwenheim-Skolem theorem from the
previous lecture. In fact, we will prove a slightly more general version. But
first, we need a lemma.

Lemma 8.9 (Tarski-Vaught ¹-criterion). If B ⊆ A, and for all b ∈ B and
formulas ϕ(x, y), A |= ∃x.ϕ[b] implies that there is a b′ ∈ B such that A |=
ϕ[b, b′], then B ¹ A.

Proof. We show that
B |= ϕ[b] ⇐⇒ A |= ϕ[b]

for all formulas ϕ by induction on the structure of ϕ. Without loss of generality,
we may assume that ϕ does not contain ∀ (we can always translate ∀ into ¬∃¬).

• If ϕ is an atom, this follows from the definition of ⊆ on structures.

• If ϕ = ϕ1 ∧ ϕ2, by the inductive hypothesis we know that B |= ϕi[b] ⇐⇒
A |= ϕi[b] for i = 1, 2. Then it is not hard to see that B satisfies (ϕ1 ∧
ϕ2)[b] = ϕ1[b] ∧ ϕ2[b] if and only if A does.

• The arguments for ∨ and ¬ are similar.

• If ϕ = ∃y.θ. First, suppose B |= ∃y.θ[b], and b′ ∈ B witnesses this. Then
B |= θ[b, b′], which by the inductive hypothesis implies that A |= θ[b, b′],
and hence that A |= ∃y.θ[b].

Conversely, suppose A |= ∃y.θ[b]. By assumption, there is a b′ ∈ B for
which A |= θ[b, b′]. But by the induction hypothesis, this shows that
B |= θ[b, b′] and hence that B |= ∃y.θ[b].

SDG

Definition 8.10. Let A be a structure and ϕ(x, y) some formula. Then we
may define a Skolem function fϕ for which

A |= ∃x.ϕ[c, x] =⇒ A |= ϕ[c, fϕ(c)].

The Skolem function fϕ picks a satisfier for the formula ϕ, assuming one exists.

Theorem 8.11 (Löwenheim-Skolem). If A =
〈
A,EA

〉
is a structure (that is, a

set with a binary relation) such that A |= T , then for all X ⊆ A, there is some
B such that X ⊆ B ⊆ A, B ¹ A, and card(B) = ℵ0 · card(X).

Proof. First, form a set of Skolem functions

F = { fϕ | ϕ ∈ T }.
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We note that F is countable, since T is (we assume a countable language). We
define Xω, the Skolem hull of X in A, as follows:

X0 = X

Xi+1 = { f(c) | c ∈ Xi and f ∈ F }
Xω =

⋃

i∈ω

Xi

In fact, Xω is the desired B. That Xω ¹ T follows by construction from
the Tarski-Vaught criterion. Clearly X ⊆ Xω ⊆ A. Also, card(Xω) ≥ ℵ0,
since it must satisfy all statements of the form “at least n elements exist”;
card(Xω) ≤ ℵ0 · card(X), since it is a countable union of sets with size at most
ℵ0 · card(X). SDG

Remark. We now note that the Löwenheim-Skolem Theorem is one half of a
more general observation about the sizes of models.

Theorem 8.12. For any infinite structure A and cardinal κ ≥ ℵ0, there is a
structure B such that B ≡ A and card(B) = κ.

Proof. Suppose card(A) = λ. If κ ≤ λ, by Theorem 8.11 we can find some
B ¹ A with card(B) = κ, by forming the Skolem hull of some subset of A of
cardinality κ; this implies that B ≡ A.

Conversely, suppose κ > λ. Let {Cα | α < κ } be a set of new constant
symbols. Now consider the set of formulas

T ′ = Th(A) ∪ {¬(Cα = Cβ) | α < β < κ }.
Any finite subset of T ′ is satisfiable by A; hence, by compactness (Theorem 8.5),
T ′ is satisfiable by some structure, call it B′. The cardinality of B′ must be at
least κ. Also, B′ ≡ A (with respect to the language without the extra constants
Cα), and by Theorem 8.11 we may construct a B ¹ B′ with cardinality κ, and
B ≡ A. SDG

Remark. For every finite A, on the other hand, there exists some ϕA such that
B |= ϕA if and only if B ∼= A. That is, every finite structure can be characterized
up to isomorphism in first-order logic. We can simply take ϕA to be a complete
encoding of the relation on A.

Definition 8.13. A theory T is κ-categorical iff for all A and B, if card(A) =
card(B) = κ and A |= T and B |= T , then A ∼= B.

Remark. In other words, T is κ-categorical if it characterizes its models of
cardinality κ up to isomorphism.

For example, Th(Q, <) is ℵ0-categorical, but not 2ℵ0 -categorical, which we
saw in a previous lecture.

There exist T which are not ℵ0-categorical but are κ-categorical for every
κ > ℵ0. There are also trivial examples of T which are κ-categorical for all κ
(for example, a set with the empty relation or total relation).
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One might wonder whether there are T which are ℵ1-categorical but not
ℵ2-categorical. The answer, as shown by M. Morley in the 1960’s, is no.

Theorem 8.14 (Morley, 196?). If T is a complete, countable first-order theory,
and T is κ-categorical for some κ > ℵ0, then T is κ-categorical for all κ > ℵ0.

Remark. One might also wonder whether there is some countable structure A
such that the second-order theory of A is not categorical? This question was
shown by Ajtai to be independent of ZFC.
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