Lecture 12: Relative Consistency II
 February 25, 2009

9 Relative consistency of Reg

We now finally return to prove Theorem 7.8:
Theorem 7.8. If $Z F$ without Regularity is consistent, then so is $Z F$.
We'll first need a few more lemmas.
Lemma 9.1. The rank hierarchy V (Definition 7.5) is transitive.
Proof. By definition of V, it suffices to show that V_{α} is transitive for all ordinals α, which we show by transfinite induction.

- $V_{0}=\emptyset$, which is vacuously transitive.
- By definition, $V_{\alpha+1}=\mathcal{P}\left(V_{\alpha}\right)$; by the inductive hypothesis we may assume V_{α} is transitive. Let $x \in V_{\alpha+1}$. Then $x \subseteq V_{\alpha}$. Now let $y \in x$; then $y \in V_{\alpha}$. But since V_{α} is transitive, this means that $y \subseteq V_{\alpha}$, and hence $y \in V_{\alpha+1}$.
- Now consider $V_{\lambda}=\bigcup_{\beta<\lambda} V_{\beta}$, where λ is a limit ordinal. Let $x \in V_{\lambda}$. Then $x \in V_{\beta}$ for some $\beta<\lambda$. Since V_{β} is transitive by the inductive hypothesis, if $y \in x$, then $y \in V_{\beta}$, and hence $y \in V_{\lambda}$.

Remark. This immediately implies that the rank hierarchy is cumulative: $V_{\alpha} \in$ $\mathcal{P}\left(V_{\alpha}\right)=V_{\alpha+1}$, and since $V_{\alpha+1}$ is transitive, $V_{\alpha} \subseteq V_{\alpha+1}$ as well.

Lemma 9.2. If all the elements of a set u are sets in the rank hierarchy, then so is u.

Proof. Let α be the maximum rank of the elements of u; since the rank hierarchy is cumulative, $u \subseteq V_{\alpha}$. But then $u \in V_{\alpha+1}$.

Lemma 9.3. If x is in the rank hierarchy, so is $\mathcal{P}(x)$.
Proof. Suppose $x \in V$. Therefore $x \subseteq V$, since V is transitive. Then by the previous lemma, every subset of x is in V. Applying the previous lemma again, we conclude that $\mathcal{P}(x) \in V$.

Proof of Theorem 7.8. We must show that if we assume ZF - Reg, each of the axioms of ZF holds when relativized to V.

- Axiom of Extensionality. We must show

$$
[\forall x \cdot \forall y \cdot((\forall z \in x \cdot z \in y) \wedge(\forall z \in y . z \in x)) \Rightarrow(x=y)]^{V}
$$

By definition of $(-)^{V}$, this is equivalent to

$$
\forall x \in V . \forall y \in V \cdot[((\forall z \in x . z \in y) \wedge(\forall z \in y . z \in x)) \Rightarrow(x=y)]^{V}
$$

(where $\forall x \in V . \varphi$ is an abbreviation for $\forall x \cdot V(x) \Rightarrow \varphi$). Let $x \in V$ and $y \in V$; then we must show the remainder of the formula for this particular x and y.However, note that this formula is Δ_{0} and its free variables are in V (which is transitive), so by Lemma 7.12, its relativization holds iff the unrelativized version holds in the original universe - which is does, by the Axiom of Extensionality.

- Pairing. We must show

$$
[\forall x . \forall y \cdot \exists z \cdot \forall w .(w \in z \Leftrightarrow(w=x \vee w=y))]^{V},
$$

that is,

$$
\forall x \in V . \forall y \in V . \exists z \in V . \forall w \in V .(w \in z \Leftrightarrow(w=x \vee w=y))
$$

So, let $x, y \in V$, and let $z=\{x, y\}$, which is guaranteed to exist by the Axiom of Pairing. Note that $z \in V$, since its elements are (by Lemma 9.2). The remaining condition holds for all sets w by the Axiom of Pairing, so it certainly holds for all sets $w \in V$.

- Union. We must show

$$
[\forall x . \exists y . \forall z . z \in y \Leftrightarrow(\exists w \in x . z \in w)]^{V}
$$

that is,

$$
\forall x \in V . \exists y \in V . \forall z \in V .[z \in y \Leftrightarrow(\exists w \in x . z \in w)]^{V},
$$

noting that the part still in brackets is Δ_{0}. Let $x \in V$, and let $y=\bigcup x$ (which exists by the Axiom of Union). $y \in V$, again by Lemma 9.2. Finally, the formula in brackets holds for all sets z, so the relativized version certainly holds for all $z \in V$, since it is Δ_{0}.

- Power set. We must show

$$
[\forall x . \exists y . \forall z . z \in y \Leftrightarrow(\forall w \in z . w \in x)]^{V},
$$

that is,

$$
\forall x \in V . \exists y \in V . \forall z \in V .[z \in y \Leftrightarrow(\forall w \in z . w \in x)]^{V}
$$

Let $x \in V$, and let $y=\mathcal{P}(x)$. By Lemma 9.3, $y \in V$. The remainder of the argument is similar to the previous case.

- Infinity. We must show

$$
[\exists x . \emptyset \in x \wedge(\forall y \in x . y \cup\{y\} \in x)]^{V}
$$

that is,

$$
\exists x \in V \cdot[\emptyset \in x \wedge(\forall y \in x . y \cup\{y\} \in x)]^{V}
$$

Note that the formula inside the brackets can be expressed as a Δ_{0} formula. Let $x=\omega$, and note that it satisfies the Axiom of Infinity, and is in V (in particular, it is in $\left.V_{\omega+1}\right)$. Then we are done, since the remainder of the formula is Δ_{0}.

- Regularity. We must show

$$
[\forall x .(\exists y \in x) \Rightarrow \exists y \in x . \forall z \in y . z \notin x]^{V}
$$

(without using the Axiom of Regularity!). All but the $\forall x$. is clearly Δ_{0}. So let $x \in V$, and suppose x is not empty. Pick y of minimal rank in x. Then $y \cap x=\emptyset$, since otherwise there would be some element of x which is also an element of y, contradicting the minimality of the rank of y.

- Separation. We must show that for all formulas φ,

$$
[\forall \bar{t} . \forall x . \exists y . \forall z . z \in y \Leftrightarrow z \in x \wedge \varphi(z, \bar{t})]^{V},
$$

that is,

$$
\forall \bar{t} \in V . \forall x \in V . \exists y \in V . z \in y \Leftrightarrow z \in x \wedge \varphi^{V}(z, \bar{t}) .
$$

So, let $\bar{t}, x \in V$. Then let $y=\left\{z \in x \mid \varphi^{V}(z, \bar{t})\right\}$, which exists by the Axiom of Separation. But all the elements of y are elements of $x \in V$, and therefore also elements of V since V is transitive; but then by Lemma 9.2, $y \in V$.

- Replacement. We must show that for all F,

$$
(F \text { is a functional relation })^{V} \Rightarrow(\forall x \cdot \exists y \cdot y=F[x])^{V},
$$

that is, more explicitly,

$$
\left(\forall x \cdot\left(\exists y \cdot F(x, y) \wedge\left(\forall y, y^{\prime} \cdot F(x, y) \wedge F\left(x, y^{\prime}\right) \Rightarrow y=y^{\prime}\right)\right)\right)^{V} \Rightarrow(\forall x \cdot \exists y \cdot y=F[x])^{V}
$$

So, we are given the fact that F^{V} is a functional relation when restricted to V, and that it sends every element of V to another element of V. Let $x \in V$. Now, invoking the Axiom of Replacement, we may conclude that the image of x under $F^{V} \upharpoonright V$ is a set. However, since all the elements of x are elements of V (since V is transitive), this image is a set of elements of V, and hence in V. Furthermore, this image y should satisfy

$$
(y=F[x])^{V}
$$

that is,

$$
(\forall z \cdot(z \in y \Leftrightarrow \exists w \in x \cdot F(w, z)))^{V}
$$

but this is clearly satisfied by the image of x under $F^{V} \upharpoonright V$.

- Choice. We must show that

$$
[\forall x .(\forall y \in x . y \neq \emptyset) \Rightarrow \exists f . \operatorname{dom}(f)=x \wedge \forall y \in x . f(y) \in y]^{V},
$$

that is,

$$
\forall x \in V \cdot(\forall y \in x . y \neq \emptyset) \Rightarrow \exists f \in V \cdot \operatorname{dom}(f)=x \wedge \forall y \in x \cdot f(y) \in y
$$

So, suppose $x \in V$ and all the elements of x are nonempty. Then by the Axiom of Choice, there exists a choice function f in the universe which clearly satisfies the necessary conditions on f. Also, f consists of pairs of elements of x and elements of elements of x, all of which are in V by transitivity; since V contains pairs by construction, $f \in V$.

