10 Strongly inaccessible cardinals and ZF

Recall the definition of a strongly inaccessible cardinal.

Definition 10.1. κ is strongly inaccessible (SI) iff κ is regular and κ is a strong limit (that is, $2^{\lambda} < \kappa$ for every $\lambda < \kappa$). (We can also place the restriction that $\kappa > \omega$, since ω would not make a very interesting strongly inaccessible cardinal.)

Lemma 10.2. If κ is a strongly inaccessible cardinal, then for every $\beta < \kappa$, card $(V_{\beta}) < \kappa$.

Proof. By induction on β . The base case ($\beta = 0$) is obvious.

Suppose $\beta = \alpha + 1$, and by the inductive hypothesis $\operatorname{card}(V_{\alpha}) < \kappa$. Then $\operatorname{card}(V_{\beta}) = 2^{\operatorname{card}(V_{\alpha})} < \kappa$ since κ is a strong limit ordinal.

Now suppose β is a limit ordinal, and by the inductive hypothesis card $(V_{\alpha}) < \kappa$ for every $\alpha < \beta$. Then card $(V_{\beta}) = \sup_{\alpha < \beta} \operatorname{card}(V_{\alpha})$, since the V_{α} are monotonically increasing. If this is equal to κ , then $\alpha \mapsto \operatorname{card}(V_{\alpha})$ is a cofinal map $\beta \to \kappa$ —but this is a contradiction, since $\beta < \kappa$ and κ is regular.

Theorem 10.3. If κ is a strongly inaccessible cardinal, then $V_{\kappa} \models ZF$.

Proof. Since κ is a limit ordinal greater than ω , it is easy to see that $V_{\kappa} \models Z$ (that is, ZF without the Axiom of Replacement). So it only remains to show that $V_{\kappa} \models$ Replacement.

Let F be a functional relation, and let $x \in V_{\kappa}$. Then we wish to show that $F[x] \in V_{\kappa}$. First, note that since κ is a limit ordinal, $x \in V_{\beta}$ for some $\beta < \kappa$. Then since V_{β} is transitive, $x \subseteq V_{\beta}$ and hence $\operatorname{card}(x) \leq \operatorname{card}(V_{\beta}) < \kappa$ by Lemma 10.2.

Now let $\gamma = \sup\{ \operatorname{rank}(F(y)) \mid y \in x \}$. Hence $F[x] \in V_{\gamma+1}$, so it remains only to show that $\gamma < \kappa$. But if $\gamma = \kappa$, then $y \mapsto \operatorname{rank}(F(y))$ would be a cofinal map from x to κ , a contradiction since $\operatorname{card}(x) < \kappa$.

Theorem 10.4. $ZF \nvDash \exists \kappa.SI(\kappa)$.

Remark. We can show this using Gödel's second incompleteness theorem: suppose ZF could show the existence of a strongly inaccessible cardinal. Then by Theorem 10.3, we could derive $ZF \vdash \exists \kappa . V_{\kappa} \models ZF$. But by the completeness theorem of first-order logic, this amounts to a proof of ZF's consistency within ZF, contradicting Gödel's second incompleteness theorem.

This proof is pithy but not very illuminating. We can actually give a more elementary proof that does not rely on any incompleteness theorems. First, we'll need a lemma about strong inaccessibility. **Lemma 10.5** (Absoluteness of SI). If λ is a limit ordinal and $\kappa \in V_{\lambda}$, then $SI(\kappa) \iff V_{\lambda} \models SI(\kappa)$.

Proof. Unfolding the definition of SI, it suffices to show each of the following.

- $\operatorname{ord}(\kappa) \iff V_{\lambda} \models \operatorname{ord}(\kappa)$. Since we have the Axiom of Regularity, $\operatorname{ord}(\kappa)$ simply reduces to the statement that κ is a transitive linear order, both of which are Δ_0 conditions.
- $\operatorname{card}(\kappa) \iff V_{\lambda} \models \operatorname{card}(\kappa)$. Recall that $\operatorname{card}(\kappa)$ holds iff there is no f for which there exists some $\beta < \kappa$ such that $f : \beta \xrightarrow[]{1-1}{\text{onto}} \kappa$.

First, suppose $\operatorname{card}(\kappa)$, that is, there is no bijection in the universe between κ and some $\beta < \kappa$. If there is no such bijection in the universe, there isn't one in V_{λ} either, since the notion of being a bijection between β and κ is Δ_0 .

Now, suppose $V_{\lambda} \models \operatorname{card}(\kappa)$, and suppose by way of contradiction that there is some f in the universe which is a bijection between κ and some $\beta < \kappa$. Note that $f \subseteq \beta \times \kappa \subseteq \mathcal{P}(\mathcal{P}(\beta \cup \kappa))$, so its rank is at most two greater than the rank of κ . But $\kappa \in V_{\lambda}$, and since λ is a limit ordinal, $\kappa \in V_{\alpha}$ for some $\alpha < \lambda$, and hence $f \in V_{\alpha+2} \subseteq V_{\lambda}$, which is a contradiction.

• $cf(\kappa) = \kappa \iff V_{\lambda} \models cf(\kappa) = \kappa$. We can also restate $cf(\kappa) = \kappa$ as the fact that there is no ordinal $\alpha < \kappa$ for which there exists a cofinal map $f : \alpha \to \kappa$.

 (\Longrightarrow) Suppose there is no ordinal $\alpha < \kappa$ in the universe for which there exists a cofinal map $f : \alpha \to \kappa$. Then there is no such ordinal in V_{λ} , either, since the notion of being a cofinal map from $\alpha \to \kappa$ is absolute for V_{λ} (this is because $\alpha, \kappa \in V_{\lambda}$; the notion of being a functional relation from α to κ is absolute for V_{λ} ; and the predicate defining what it means to be a *cofinal* map only has to talk about union, which lowers rank).

(\Leftarrow) Suppose that $V_{\lambda} \models cf(\kappa) = \kappa$, and suppose by way of contradiction that there is some $\alpha < \kappa$ and a cofinal map $f : \alpha \to \kappa$. Clearly $\alpha \in V_{\lambda}$. It is also easy to see that $f \in V_{\lambda}$ by the same argument as in the previous case.

• κ is a strong limit cardinal $\iff V_{\lambda} \models \kappa$ is a strong limit cardinal.

First, suppose κ is a strong limit cardinal. This means that $2^{\iota} < \kappa$ for every cardinal $\iota < \kappa$, which is the case if and only if, for every $\iota < \kappa$, there is an injection $f : \mathcal{P}(\iota) \xrightarrow{1-1} \kappa$. By the usual rank argument, $f \in V_{\lambda}$.

Now suppose $V_{\lambda} \models (\kappa \text{ is a strong limit cardinal})$, which means that for every cardinal $\iota < \kappa$, there is some $f \in V_{\lambda}$ such that $f : \mathcal{P}(\iota) \xrightarrow{1-1} \kappa$. But then for each ι , that f is evidence in the universe that $2^{\iota} < \kappa$; hence κ is a strong limit cardinal.

• κ is uncountable $\iff V_{\lambda} \models \kappa$ is uncountable.

First, suppose κ is uncountable; then there does not exist any function $f: \kappa \xrightarrow{1-1} \omega$. Then in particular, there does not exist any such function in V_{λ} , since being an injection from κ into ω is absolute for V_{λ} .

Now, suppose $V_{\lambda} \models \kappa$ is uncountable. By way of contradiction, suppose there is some f in the universe with $f : \kappa \xrightarrow{1-1} \omega$. By an easy rank argument (noting that κ uncountable implies $\lambda > \omega$), $f \in V_{\lambda}$.

SDG

Proof of Theorem 10.4. Suppose that ZF can show the existence of a strongly inaccessible cardinal. Then there must be a smallest such cardinal λ , that is,

$$ZF \vdash \exists \lambda. (SI(\lambda) \land \forall \nu < \lambda. \neg SI(\nu)).$$

So $V_{\lambda} \models ZF$, and in particular, it must be the case that $V_{\lambda} \models \exists \kappa.SI(\kappa)$. So, there must be some $\kappa < \lambda$ for which $V_{\lambda} \models SI(\kappa)$. However, we know by Lemma 10.5 that SI is absolute for V_{λ} , so $SI(\kappa)$, contradicting the fact that λ is the smallest such cardinal.