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10 Strongly inaccessible cardinals and ZF

Recall the definition of a strongly inaccessible cardinal.

Definition 10.1. & is strongly inaccessible (SI) iff k is regular and « is a strong
limit (that is, 2* < & for every A < k). (We can also place the restriction that
Kk > w, since w would not make a very interesting strongly inaccessible cardinal.)

Lemma 10.2. If k is a strongly inaccessible cardinal, then for every 0 < k,
card(Vp) < k.

Proof. By induction on 8. The base case (5 = 0) is obvious.

Suppose 8 = a + 1, and by the inductive hypothesis card(V,) < . Then
card(Vg) = 2card(Va) < since & is a strong limit ordinal.

Now suppose [ is a limit ordinal, and by the inductive hypothesis card(V,,) <
k for every a < 8. Then card(Vjs) = sup, 4 card(V,), since the V,, are mono-
tonically increasing. If this is equal to k, then a — card(V,,) is a cofinal map
(8 — k—but this is a contradiction, since § < x and « is regular. 4

Theorem 10.3. If k is a strongly inaccessible cardinal, then V,, = ZF.

Proof. Since k is a limit ordinal greater than w, it is easy to see that V, = Z
(that is, ZF without the Axiom of Replacement). So it only remains to show
that V,; = Replacement.

Let F be a functional relation, and let € V. Then we wish to show that
Flz] € V,. First, note that since « is a limit ordinal, x € Vj for some 8 < k.
Then since V3 is transitive, z C V3 and hence card(z) < card(V3) < k by
Lemma 10.2.

Now let v = sup{rank(F(y)) | y € = }. Hence F[z] € V41, so it remains
only to show that v < k. But if v = &, then y — rank(F(y)) would be a cofinal
map from z to k, a contradiction since card(z) < k. ]

Theorem 10.4. ZF ¥ 3k.5I(k).

Remark. We can show this using Godel’s second incompleteness theorem: sup-
pose ZF' could show the existence of a strongly inaccessible cardinal. Then by
Theorem 10.3, we could derive ZF + 3k.V, = ZF. But by the completeness
theorem of first-order logic, this amounts to a proof of ZF’s consistency within
ZF, contradicting Godel’s second incompleteness theorem.

This proof is pithy but not very illuminating. We can actually give a more
elementary proof that does not rely on any incompleteness theorems. First,
we’ll need a lemma about strong inaccessibility.
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Lemma 10.5 (Absoluteness of ST). If A is a limit ordinal and k € V), then
SI(k) < V) E SI(k).

Proof. Unfolding the definition of S1, it suffices to show each of the following.

e ord(k) < V) E ord(k). Since we have the Axiom of Regularity, ord(x)
simply reduces to the statement that x is a transitive linear order, both
of which are Ay conditions.

o card(k) <= V) = card(k). Recall that card(x) holds iff there is no f for

which there exists some 3 < k such that f : 3 % K.
onto

First, suppose card(k), that is, there is no bijection in the universe between
k and some ( < k. If there is no such bijection in the universe, there isn’t
one in V), either, since the notion of being a bijection between § and k is
Ag.

Now, suppose V) | card(x), and suppose by way of contradiction that
there is some f in the universe which is a bijection between x and some
B < k. Note that f C 8 x k C P(P(8Uk)), so its rank is at most two
greater than the rank of k. But x € V), and since A is a limit ordinal,
Kk € V, for some a < A, and hence f € V12 C V), which is a contradiction.

o cf(k) =k < V) = cf(k) = k. We can also restate cf(k) = & as the
fact that there is no ordinal a < & for which there exists a cofinal map
fra— k.

(=) Suppose there is no ordinal & < & in the universe for which there
exists a cofinal map f : @« — k. Then there is no such ordinal in V), either,
since the notion of being a cofinal map from « — & is absolute for V) (this
is because a, k € V); the notion of being a functional relation from « to k
is absolute for V) ; and the predicate defining what it means to be a cofinal
map only has to talk about union, which lowers rank).

(«<=) Suppose that V) |= cf(k) = &, and suppose by way of contradiction
that there is some o < k and a cofinal map f: a — k. Clearly a € V). It
is also easy to see that f € V) by the same argument as in the previous
case.

e r is a strong limit cardinal <= V) | k is a strong limit cardinal.

First, suppose k is a strong limit cardinal. This means that 2* < x for

every cardinal ¢ < k, which is the case if and only if, for every ¢ < k, there

is an injection f : P(¢) Lk By the usual rank argument, f € V).

Now suppose V) = (k is a strong limit cardinal), which means that for

every cardinal ¢ < k, there is some f € V) such that f: P(v) L k. But
then for each ¢, that f is evidence in the universe that 2* < x; hence & is
a strong limit cardinal.
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e k is uncountable <= V) |= & is uncountable.
First, suppose x is uncountable; then there does not exist any function

f: K L1, . Then in particular, there does not exist any such function in

V), since being an injection from x into w is absolute for V).

Now, suppose V) |= k is uncountable. By way of contradiction, suppose

there is some f in the universe with f : & oo By an easy rank
argument (noting that x uncountable implies A > w), f € Vj.

&

Proof of Theorem 10.4. Suppose that ZF can show the existence of a strongly
inaccessible cardinal. Then there must be a smallest such cardinal A, that is,

ZF F3N(SI(A) Ay < A~SI(v)).

So Vo = ZF, and in particular, it must be the case that V) | Jx.SI(k).
So, there must be some £ < A for which V) = SI(x). However, we know by
Lemma 10.5 that ST is absolute for V), so SI(k), contradicting the fact that A
is the smallest such cardinal. &
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