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13 The Constructible Hierarchy

Remark. We now return to Goédel’s Constructible Hierarchy, L. Ultimately, we
will show that
ZF v ZF" + ACY + GCH*"

(where here “ZF” does not include the Axiom of Choice), thus proving the
consistency of AC and GCH relative to that of ZF.

Definition 13.1. We define the constructible hierarchy L as follows:

Intuitively, Def(X) is the collection of sets definable in (X, €) with param-
eters from X. But we will take some care to nail this down more rigorously.

Remark. We assume that our formal language has variables v;, ¢ € w, and the
usual connectives (=, €, V, =, 3). We now define a formal coding of formulas
as sets (A “Godel-setting” scheme, if you will.)

Definition 13.2. We define a “function” Code sending formulas to sets. (Note
it is only a function in a metaphorical sense, not a set-theoretic one, and is used
only for convenience of notation.)

Code(v; = vj) = (0,1, 7)

Code(v; € vj) = (1,4,7)
Code(p V1) = (2,Code(p), Code(v)))
Code(—p) = (3,Code(p))
=

Code(Fv;.0) = (4,4, Code(p)) .

Definition 13.3. We now define a relation F'm, which relates coded formulas
u to their construction depth n and a sequence s of their subformulas.
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Fm(u,n,s) =n €wA Fn(s) Adom(s) =n+1As(n) =u
AVE < n.

(Eli,j < w.s(k) = Code(v; = vj)
V 3i,j < w.s(k) = Code(v; € vj)
Vv al,m < k.s(k) = (2,s(l),s(m))
V3l < k.s(k) = (3,s(1))

VIl <kJi<w.s(k) = (4,i,s(l)>)

Note that Fn(x) is a predicate stating that x is a function. Then we also
define Fm(u) £ 3n.3s.Fm(u,n,s).

Remark. Finally, we define a satisfaction relation on formulas with respect to a
set X. The idea is that if s; is a coding for some subformula of u, then b; will be
the set of satisfiers of s;, that is, the set of functions that assign free variables
in s; to elements of X in such a way that s; is satisfied.

We want to be able to bound the domain of the satisfiers in b;, but we can’t
just a priori pick some arbitrary limit. However, given a coding of a formula u,
we know that the rank of u (denoted p(u) in what follows) will be big enough,
since it is certainly an upper bound on the indices of the free variables occuring
in u (since each is embedded as an ordinal somewhere in u).

Definition 13.4. We define the relation Sat’ on sets X, coded formulas u, and
sequences of sets of satisfiers b as follows:

Sat'(X,u,b) = In.Is.Fm(u,n,s) A Fn(b) Adom(b) =n + 1
Arng(b) C PW X
AVE <n+1.

((Hi,j < p(u).s(k) = Code(v; = v;) AVt € b(k).t(i) = t(j))

V (3,7 < p(u).s(k) = Code(v; € v;) AVt € b(k).t(i) € t(5))
Vv (3l,m < k.s(k) = (2,s(1),s(m)) Ab(k) = b(l) Ub(m))
V (3l < k.s(k) = (3,s5()) Ab(k) =P X — (1))

V (3l < k.3i < p(w).s(k) = (4,4,50)) Ab(k) = {t | 3a € X.t[i — a] € b(l) }))

where t[i — a] =t — {(;,t(4)) } U {(i,a)}.
Definition 13.5. We can now define Sat as follows:

Sat(X,u,t) £ Ib.3n € w.Sat'(X,u,b) At € b(n) Adom(b) =n + 1.
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Definition 13.6. We define the notions of ¥, II;, and A;-T formulas as fol-
lows:

e A formula ¢ is ¥; if there is some Ay formula 1 such that ¢ = Jz.7.
e A formula ¢ is II; if there is some Ay formula 1) such that ¢ = Vz.1.

e ¢ is Ay-T for some theory T iff there is a ¥; formula ¢ and a II; formula
x such that
TEVZ(p(Z) & x(2) A p(Z) & ¥(2)).

Lemma 13.7. If ¢ is A1-T then @ is absolute for transitive models of T .

Proof. Suppose M C M’ are two transitive models of 7', and we have some
AT formula (z). We wish to show that ™ < oM for all z € M.

(=) Suppose ©M (%) holds. Then since M models T, we have (3z.¢(z, z))M,
that is, there exists 2 € M such that 1(z, z)*. But we know that M is transitive
and ¢ is Ag, so ¢(z,2)™" also holds (and 2 € M’ since M C M’). Therefore,
©M' (%) holds.

(<) Conversely, suppose ¢’ (z) holds. Then we have (Vz.x(z,z))™'). By
a similar argument, since all 2 € M’ are also in M, and x is Ao, (Vo.x(%,2))M
holds, and therefore so does ¢ ().

Remark. Now we can give the sketch of an argument that Sat is A;-ZF. We
first note that Sat is X1 as defined (it needs to be shown that Sat’ is Ag). But
we also note that by the way we constructed Sat’, if some b exists which satisfies
the definition of Sat, it is unique, and so Sat(X,u,t) is equivalent to

Vb.(dom(b) = n + 1 A Sat' (X, u,b) =t € b(n)),

which is II;.
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