Lecture 16: The Constructible Hierarchy

March 23, 2009

13 The Constructible Hierarchy

Remark. We now return to Gödel's Constructible Hierarchy, L. Ultimately, we will show that

$$
Z F \vdash Z F^{L}+A C^{L}+G C H^{L}
$$

(where here "ZF" does not include the Axiom of Choice), thus proving the consistency of AC and GCH relative to that of ZF.

Definition 13.1. We define the constructible hierarchy L as follows:

$$
\begin{aligned}
L_{0} & =\emptyset \\
L_{\alpha+1} & =\operatorname{Def}\left(L_{\alpha}\right) \\
L_{\lambda} & =\bigcup_{\beta<\lambda} L_{\beta}, \quad \lim (\lambda) .
\end{aligned}
$$

Intuitively, $\operatorname{Def}(X)$ is the collection of sets definable in $\langle X, \in\rangle$ with parameters from X. But we will take some care to nail this down more rigorously.

Remark. We assume that our formal language has variables $v_{i}, i \in \omega$, and the usual connectives $(=, \in, \vee, \neg, \exists)$. We now define a formal coding of formulas as sets (A "Gödel-setting" scheme, if you will.)

Definition 13.2. We define a "function" Code sending formulas to sets. (Note it is only a function in a metaphorical sense, not a set-theoretic one, and is used only for convenience of notation.)

$$
\begin{aligned}
\operatorname{Code}\left(v_{i}=v_{j}\right) & =\langle 0, i, j\rangle \\
\operatorname{Code}\left(v_{i} \in v_{j}\right) & =\langle 1, i, j\rangle \\
\operatorname{Code}(\varphi \vee \psi) & =\langle 2, \operatorname{Code}(\varphi), \operatorname{Code}(\psi)\rangle \\
\operatorname{Code}(\neg \varphi) & =\langle 3, \operatorname{Code}(\varphi)\rangle \\
\operatorname{Code}\left(\exists v_{i} \cdot \varphi\right) & =\langle 4, i, \operatorname{Code}(\varphi)\rangle .
\end{aligned}
$$

Definition 13.3. We now define a relation $F m$, which relates coded formulas u to their construction depth n and a sequence s of their subformulas.

$$
\begin{aligned}
F m(u, n, s) & \triangleq n \in \omega \wedge F n(s) \wedge \operatorname{dom}(s)=n+1 \wedge s(n)=u \\
& \wedge \forall k \leq n . \\
& \left(\exists i, j<\omega \cdot s(k)=\operatorname{Code}\left(v_{i}=v_{j}\right)\right. \\
& \vee \exists i, j<\omega \cdot s(k)=\operatorname{Code}\left(v_{i} \in v_{j}\right) \\
& \vee \exists l, m<k \cdot s(k)=\langle 2, s(l), s(m)\rangle \\
& \vee \exists l<k \cdot s(k)=\langle 3, s(l)\rangle \\
& \vee \exists l<k \cdot \exists i<\omega \cdot s(k)=\langle 4, i, s(l)\rangle)
\end{aligned}
$$

Note that $F n(x)$ is a predicate stating that x is a function. Then we also define $F m(u) \triangleq \exists n . \exists s . F m(u, n, s)$.
Remark. Finally, we define a satisfaction relation on formulas with respect to a set X. The idea is that if s_{i} is a coding for some subformula of u, then b_{i} will be the set of satisfiers of s_{i}, that is, the set of functions that assign free variables in s_{i} to elements of X in such a way that s_{i} is satisfied.

We want to be able to bound the domain of the satisfiers in b_{i}, but we can't just a priori pick some arbitrary limit. However, given a coding of a formula u, we know that the rank of u (denoted $\rho(u)$ in what follows) will be big enough, since it is certainly an upper bound on the indices of the free variables occuring in u (since each is embedded as an ordinal somewhere in u).

Definition 13.4. We define the relation $S a t^{\prime}$ on sets X, coded formulas u, and sequences of sets of satisfiers b as follows:

$$
\begin{aligned}
\operatorname{Sat}^{\prime}(X, u, b) & \triangleq \exists n . \exists s . F m(u, n, s) \wedge F n(b) \wedge \operatorname{dom}(b)=n+1 \\
& \wedge \operatorname{rng}(b) \subseteq \rho(u) X \\
& \wedge \forall k<n+1 . \\
& \left(\left(\exists i, j<\rho(u) . s(k)=\operatorname{Code}\left(v_{i}=v_{i}\right) \wedge \forall t \in b(k) \cdot t(i)=t(j)\right)\right. \\
& \vee\left(\exists i, j<\rho(u) . s(k)=\operatorname{Code}\left(v_{i} \in v_{i}\right) \wedge \forall t \in b(k) \cdot t(i) \in t(j)\right) \\
& \vee(\exists l, m<k \cdot s(k)=\langle 2, s(l), s(m)\rangle \wedge b(k)=b(l) \cup b(m)) \\
& \vee\left(\exists l<k . s(k)=\langle 3, s(l)\rangle \wedge b(k)={ }^{\rho(u)} X-b(l)\right) \\
& \vee(\exists l<k . \exists i<\rho(u) . s(k)=\langle 4, i, s(l)\rangle \wedge b(k)=\{t \mid \exists a \in X . t[i \mapsto a] \in b(l)\}))
\end{aligned}
$$

where $t[i \mapsto a]=t-\{\langle i, t(i)\rangle\} \cup\{\langle i, a\rangle\}$.
Definition 13.5. We can now define Sat as follows:

$$
\operatorname{Sat}(X, u, t) \triangleq \exists b \cdot \exists n \in \omega \cdot S a t^{\prime}(X, u, b) \wedge t \in b(n) \wedge \operatorname{dom}(b)=n+1
$$

Definition 13.6. We define the notions of Σ_{1}, Π_{1}, and $\Delta_{1}-T$ formulas as follows:

- A formula φ is Σ_{1} if there is some Δ_{0} formula ψ such that $\varphi=\exists x \cdot \psi$.
- A formula φ is Π_{1} if there is some Δ_{0} formula ψ such that $\varphi=\forall x . \psi$.
- φ is $\Delta_{1}-T$ for some theory T iff there is a Σ_{1} formula ψ and a Π_{1} formula χ such that

$$
T \vdash \forall \bar{z}(\varphi(\bar{z}) \Leftrightarrow \chi(\bar{z}) \wedge \varphi(\bar{z}) \Leftrightarrow \psi(\bar{z}))
$$

Lemma 13.7. If φ is $\Delta_{1}-T$ then φ is absolute for transitive models of T.
Proof. Suppose $M \subseteq M^{\prime}$ are two transitive models of T, and we have some $\Delta_{1}-T$ formula $\varphi(\bar{z})$. We wish to show that $\varphi^{M} \Leftrightarrow \varphi^{M^{\prime}}$ for all $\bar{z} \in M$.
(\Rightarrow) Suppose $\varphi^{M}(\bar{z})$ holds. Then since M models T, we have $(\exists x \cdot \psi(\bar{z}, x))^{M}$, that is, there exists $x \in M$ such that $\psi(\bar{z}, x)^{M}$. But we know that M is transitive and ψ is Δ_{0}, so $\psi(\bar{z}, x)^{M^{\prime}}$ also holds (and $x \in M^{\prime}$ since $M \subseteq M^{\prime}$). Therefore, $\varphi^{M^{\prime}}(\bar{z})$ holds.
(\Leftarrow) Conversely, suppose $\varphi^{M^{\prime}}(\bar{z})$ holds. Then we have $\left.(\forall x \cdot \chi(\bar{z}, x))^{M^{\prime}}\right)$. By a similar argument, since all $x \in M^{\prime}$ are also in M, and χ is $\Delta_{0},(\forall x \cdot \chi(\bar{z}, x))^{M}$ holds, and therefore so does $\varphi^{M}(\bar{z})$.
Remark. Now we can give the sketch of an argument that Sat is Δ_{1}-ZF. We first note that Sat is Σ_{1} as defined (it needs to be shown that Sat' is Δ_{0}). But we also note that by the way we constructed $S a t^{\prime}$, if some b exists which satisfies the definition of $S a t$, it is unique, and so $\operatorname{Sat}(X, u, t)$ is equivalent to

$$
\forall b .\left(\operatorname{dom}(b)=n+1 \wedge S a t^{\prime}(X, u, b) \Rightarrow t \in b(n)\right)
$$

which is Π_{1}.

