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13 The Constructible Hierarchy

Remark. We now return to Gödel’s Constructible Hierarchy, L. Ultimately, we
will show that

ZF ` ZFL +ACL +GCHL

(where here “ZF” does not include the Axiom of Choice), thus proving the
consistency of AC and GCH relative to that of ZF.

Definition 13.1. We define the constructible hierarchy L as follows:

L0 = ∅
Lα+1 = Def(Lα)

Lλ =
⋃

β<λ

Lβ , lim(λ).

Intuitively, Def(X) is the collection of sets definable in 〈X,∈〉 with param-
eters from X. But we will take some care to nail this down more rigorously.

Remark. We assume that our formal language has variables vi, i ∈ ω, and the
usual connectives (=, ∈, ∨, ¬, ∃). We now define a formal coding of formulas
as sets (A “Gödel-setting” scheme, if you will.)

Definition 13.2. We define a “function” Code sending formulas to sets. (Note
it is only a function in a metaphorical sense, not a set-theoretic one, and is used
only for convenience of notation.)

Code(vi = vj) = 〈0, i, j〉
Code(vi ∈ vj) = 〈1, i, j〉
Code(ϕ ∨ ψ) = 〈2, Code(ϕ), Code(ψ)〉
Code(¬ϕ) = 〈3, Code(ϕ)〉

Code(∃vi.ϕ) = 〈4, i, Code(ϕ)〉 .

Definition 13.3. We now define a relation Fm, which relates coded formulas
u to their construction depth n and a sequence s of their subformulas.

49



Fm(u, n, s) , n ∈ ω ∧ Fn(s) ∧ dom(s) = n+ 1 ∧ s(n) = u

∧ ∀k ≤ n.(
∃i, j < ω.s(k) = Code(vi = vj)

∨ ∃i, j < ω.s(k) = Code(vi ∈ vj)
∨ ∃l,m < k.s(k) = 〈2, s(l), s(m)〉
∨ ∃l < k.s(k) = 〈3, s(l)〉

∨ ∃l < k.∃i < ω.s(k) = 〈4, i, s(l)〉
)

Note that Fn(x) is a predicate stating that x is a function. Then we also
define Fm(u) , ∃n.∃s.Fm(u, n, s).

Remark. Finally, we define a satisfaction relation on formulas with respect to a
set X. The idea is that if si is a coding for some subformula of u, then bi will be
the set of satisfiers of si, that is, the set of functions that assign free variables
in si to elements of X in such a way that si is satisfied.

We want to be able to bound the domain of the satisfiers in bi, but we can’t
just a priori pick some arbitrary limit. However, given a coding of a formula u,
we know that the rank of u (denoted ρ(u) in what follows) will be big enough,
since it is certainly an upper bound on the indices of the free variables occuring
in u (since each is embedded as an ordinal somewhere in u).

Definition 13.4. We define the relation Sat′ on sets X, coded formulas u, and
sequences of sets of satisfiers b as follows:

Sat′(X,u, b) , ∃n.∃s.Fm(u, n, s) ∧ Fn(b) ∧ dom(b) = n+ 1

∧ rng(b) ⊆ ρ(u)X

∧ ∀k < n+ 1.(
(∃i, j < ρ(u).s(k) = Code(vi = vi) ∧ ∀t ∈ b(k).t(i) = t(j))

∨ (∃i, j < ρ(u).s(k) = Code(vi ∈ vi) ∧ ∀t ∈ b(k).t(i) ∈ t(j))
∨ (∃l,m < k.s(k) = 〈2, s(l), s(m)〉 ∧ b(k) = b(l) ∪ b(m))

∨ (∃l < k.s(k) = 〈3, s(l)〉 ∧ b(k) = ρ(u)X − b(l))

∨ (∃l < k.∃i < ρ(u).s(k) = 〈4, i, s(l)〉 ∧ b(k) = { t | ∃a ∈ X.t[i 7→ a] ∈ b(l) })
)

where t[i 7→ a] = t− {〈i, t(i)〉} ∪ {〈i, a〉}.
Definition 13.5. We can now define Sat as follows:

Sat(X,u, t) , ∃b.∃n ∈ ω.Sat′(X,u, b) ∧ t ∈ b(n) ∧ dom(b) = n+ 1.
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Definition 13.6. We define the notions of Σ1, Π1, and ∆1-T formulas as fol-
lows:

• A formula ϕ is Σ1 if there is some ∆0 formula ψ such that ϕ = ∃x.ψ.

• A formula ϕ is Π1 if there is some ∆0 formula ψ such that ϕ = ∀x.ψ.

• ϕ is ∆1-T for some theory T iff there is a Σ1 formula ψ and a Π1 formula
χ such that

T ` ∀z(ϕ(z) ⇔ χ(z) ∧ ϕ(z) ⇔ ψ(z)).

Lemma 13.7. If ϕ is ∆1-T then ϕ is absolute for transitive models of T .

Proof. Suppose M ⊆ M ′ are two transitive models of T , and we have some
∆1-T formula ϕ(z). We wish to show that ϕM ⇔ ϕM ′

for all z ∈M .
(⇒) Suppose ϕM (z) holds. Then since M models T , we have (∃x.ψ(z, x))M ,

that is, there exists x ∈M such that ψ(z, x)M . But we know thatM is transitive
and ψ is ∆0, so ψ(z, x)M ′

also holds (and x ∈ M ′ since M ⊆ M ′). Therefore,
ϕM ′

(z) holds.
(⇐) Conversely, suppose ϕM ′

(z) holds. Then we have (∀x.χ(z, x))M ′
). By

a similar argument, since all x ∈M ′ are also in M , and χ is ∆0, (∀x.χ(z, x))M

holds, and therefore so does ϕM (z). SDG

Remark. Now we can give the sketch of an argument that Sat is ∆1-ZF. We
first note that Sat is Σ1 as defined (it needs to be shown that Sat′ is ∆0). But
we also note that by the way we constructed Sat′, if some b exists which satisfies
the definition of Sat, it is unique, and so Sat(X,u, t) is equivalent to

∀b.(dom(b) = n+ 1 ∧ Sat′(X,u, b) ⇒ t ∈ b(n)),

which is Π1.
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