13 The Constructible Hierarchy

 ${\it Remark.}$ We now return to Gödel's Constructible Hierarchy, L. Ultimately, we will show that

$$ZF \vdash ZF^L + AC^L + GCH^L$$

(where here "ZF" does not include the Axiom of Choice), thus proving the consistency of AC and GCH relative to that of ZF.

Definition 13.1. We define the constructible hierarchy L as follows:

$$L_{0} = \emptyset$$

$$L_{\alpha+1} = Def(L_{\alpha})$$

$$L_{\lambda} = \bigcup_{\beta < \lambda} L_{\beta}, \qquad \lim(\lambda)$$

Intuitively, Def(X) is the collection of sets definable in $\langle X, \in \rangle$ with parameters from X. But we will take some care to nail this down more rigorously.

Remark. We assume that our formal language has variables v_i , $i \in \omega$, and the usual connectives $(=, \in, \lor, \neg, \exists)$. We now define a formal coding of formulas as sets (A "Gödel-setting" scheme, if you will.)

Definition 13.2. We define a "function" *Code* sending formulas to sets. (Note it is only a function in a metaphorical sense, not a set-theoretic one, and is used only for convenience of notation.)

$$Code(v_i = v_j) = \langle 0, i, j \rangle$$

$$Code(v_i \in v_j) = \langle 1, i, j \rangle$$

$$Code(\varphi \lor \psi) = \langle 2, Code(\varphi), Code(\psi) \rangle$$

$$Code(\neg \varphi) = \langle 3, Code(\varphi) \rangle$$

$$Code(\exists v_i.\varphi) = \langle 4, i, Code(\varphi) \rangle.$$

Definition 13.3. We now define a relation Fm, which relates coded formulas u to their construction depth n and a sequence s of their subformulas.

$$Fm(u, n, s) \triangleq n \in \omega \wedge Fn(s) \wedge \operatorname{dom}(s) = n + 1 \wedge s(n) = u$$

$$\wedge \forall k \leq n.$$

$$\left(\exists i, j < \omega.s(k) = Code(v_i = v_j) \\ \lor \exists i, j < \omega.s(k) = Code(v_i \in v_j) \\ \lor \exists l, m < k.s(k) = \langle 2, s(l), s(m) \rangle \\ \lor \exists l < k.s(k) = \langle 3, s(l) \rangle \\ \lor \exists l < k. \exists i < \omega.s(k) = \langle 4, i, s(l) \rangle \right)$$

Note that Fn(x) is a predicate stating that x is a function. Then we also define $Fm(u) \triangleq \exists n. \exists s. Fm(u, n, s)$.

Remark. Finally, we define a satisfaction relation on formulas with respect to a set X. The idea is that if s_i is a coding for some subformula of u, then b_i will be the set of satisfiers of s_i , that is, the set of functions that assign free variables in s_i to elements of X in such a way that s_i is satisfied.

We want to be able to bound the domain of the satisfiers in b_i , but we can't just a priori pick some arbitrary limit. However, given a coding of a formula u, we know that the rank of u (denoted $\rho(u)$ in what follows) will be big enough, since it is certainly an upper bound on the indices of the free variables occuring in u (since each is embedded as an ordinal somewhere in u).

Definition 13.4. We define the relation Sat' on sets X, coded formulas u, and sequences of sets of satisfiers b as follows:

$$\begin{aligned} Sat'(X, u, b) &\triangleq \exists n. \exists s. Fm(u, n, s) \land Fn(b) \land \operatorname{dom}(b) = n + 1 \\ &\land \operatorname{rng}(b) \subseteq {}^{\rho(u)}X \\ &\land \forall k < n + 1. \\ &\left((\exists i, j < \rho(u).s(k) = Code(v_i = v_i) \land \forall t \in b(k).t(i) = t(j)) \right) \\ &\lor (\exists i, j < \rho(u).s(k) = Code(v_i \in v_i) \land \forall t \in b(k).t(i) \in t(j)) \\ &\lor (\exists l, m < k.s(k) = \langle 2, s(l), s(m) \rangle \land b(k) = b(l) \cup b(m)) \\ &\lor (\exists l < k.s(k) = \langle 3, s(l) \rangle \land b(k) = {}^{\rho(u)}X - b(l)) \\ &\lor (\exists l < k.\exists i < \rho(u).s(k) = \langle 4, i, s(l) \rangle \land b(k) = \{t \mid \exists a \in X.t[i \mapsto a] \in b(l) \} \end{aligned}$$

where $t[i \mapsto a] = t - \{\langle i, t(i) \rangle\} \cup \{\langle i, a \rangle\}.$

Definition 13.5. We can now define *Sat* as follows:

$$Sat(X, u, t) \triangleq \exists b. \exists n \in \omega. Sat'(X, u, b) \land t \in b(n) \land dom(b) = n + 1.$$

Definition 13.6. We define the notions of Σ_1 , Π_1 , and Δ_1 -*T* formulas as follows:

- A formula φ is Σ_1 if there is some Δ_0 formula ψ such that $\varphi = \exists x.\psi$.
- A formula φ is Π_1 if there is some Δ_0 formula ψ such that $\varphi = \forall x.\psi$.
- φ is Δ_1 -T for some theory T iff there is a Σ_1 formula ψ and a Π_1 formula χ such that

$$T \vdash \forall \overline{z}(\varphi(\overline{z}) \Leftrightarrow \chi(\overline{z}) \land \varphi(\overline{z}) \Leftrightarrow \psi(\overline{z})).$$

Lemma 13.7. If φ is Δ_1 -T then φ is absolute for transitive models of T.

Proof. Suppose $M \subseteq M'$ are two transitive models of T, and we have some Δ_1 -T formula $\varphi(\overline{z})$. We wish to show that $\varphi^M \Leftrightarrow \varphi^{M'}$ for all $\overline{z} \in M$.

 (\Rightarrow) Suppose $\varphi^{M}(\overline{z})$ holds. Then since M models T, we have $(\exists x.\psi(\overline{z},x))^{M}$, that is, there exists $x \in M$ such that $\psi(\overline{z},x)^{M}$. But we know that M is transitive and ψ is Δ_{0} , so $\psi(\overline{z},x)^{M'}$ also holds (and $x \in M'$ since $M \subseteq M'$). Therefore, $\varphi^{M'}(\overline{z})$ holds.

 (\Leftarrow) Conversely, suppose $\varphi^{M'}(\overline{z})$ holds. Then we have $(\forall x.\chi(\overline{z},x))^{M'})$. By a similar argument, since all $x \in M'$ are also in M, and χ is Δ_0 , $(\forall x.\chi(\overline{z},x))^M$ holds, and therefore so does $\varphi^M(\overline{z})$.

Remark. Now we can give the sketch of an argument that *Sat* is Δ_1 -ZF. We first note that *Sat* is Σ_1 as defined (it needs to be shown that *Sat'* is Δ_0). But we also note that by the way we constructed *Sat'*, if some *b* exists which satisfies the definition of *Sat*, it is unique, and so *Sat(X, u, t)* is equivalent to

$$\forall b.(\operatorname{dom}(b) = n + 1 \land Sat'(X, u, b) \Rightarrow t \in b(n)),$$

which is Π_1 .