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March 25, 2009

Definition 13.8. Following the previous lecture, we can now formally define
Def .

Def(X) = { y ⊆ X |∃ϕ.fv(ϕ) = {v0, . . . vn}
∧ ∃t. dom(t) = {v0, . . . vn−1}
∧ y = { a ∈ X | Sat(X,ϕ, t ∪ {〈vn, a〉}) } }

Remark. Informally, we can think of this definition as

D(X, y) , ∃ϕ.∃a.y = { a ∈ X | 〈X,∈〉 |= ϕ[a, a] }
Def(x) = { y | D(X, y) }.

Definition 13.9. A function F is Σ1 iff the relation F (x) = y is Σ1.

Lemma 13.10. If dom(F ) is ∆1 and F is Σ1, then F is ∆1.

Proof. Since F is Σ1, we may suppose that F is given by some formula F (x, y) ,
∃z.ϕ(x, y, z).

Now consider the formula

χ(x, y) , (domF )(x) ∧ ∀w.(∃z.ϕ(x,w, z)) ⇒ w = y.

We claim that χ is equivalent to F , and that it is Π1.
First, suppose F (x, y). Then there is some z for which ϕ(x, y, z), and

(domF )(x) holds by definition. Now suppose there is some w for which ∃z.ϕ(x,w, z)
holds. Then by definition, we have F (x,w). But since F is functional, w = y.

Conversely, suppose χ(x, y) holds. Then x is in the domain of F , so there
must be some y′ for which F (x, y′). But the second clause of χ(x, y) implies
that this y′ must be equal to y; hence F (x, y).

To see that χ is Π1, note that domF is Π1, and the ∃ is on the left-hand side
of an implication. More concretely, supposing that (domF )(x) , ∀v.ψ(v, x),

χ(x, y) ⇐⇒ ∀v.ψ(v, x) ∧ ∀w.¬(∃z.ϕ(x,w, z)) ∨ w = y

⇐⇒ ∀v.ψ(v, x) ∧ ∀w.∀z.¬ϕ(x,w, z) ∨ w = y

⇐⇒ ∀v.∀w.∀z.ψ(v, x) ∧ ¬ϕ(x,w, z) ∨ w = y.

Although this seems as though it has more than one unbounded quantifier, we
could rewrite it as a single universal quantification over an ordered triple (this
is known as “contraction”). Hence, χ is Π1.

Since F is Σ1 and equivalent to a Π1 formula, it is ∆1. SDG

Remark. We remark that the class of Σ1 formulas is closed under

• existential quantification,
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• ∧ and ∨ connectives, and

• bounded universal quantification.

The first two properties are obvious; the last is not.
A similar property holds for the class of Π1 formulas.

Remark. The discussion of contraction at the end of the above proof shows
that repetitions of the same unbounded quantifier are uninteresting. The above
remark also shown that bounded quantifiers are not interesting. A real increase
in complexity, however, comes from alternating unbounded quantifiers. Σ2 is
the class of formulas beginning with ∃∀; Σ3 formulas begin with ∃∀∃; and so
on. Πn is similar.

Lemma 13.11. If G is Σ1 and F is defined by transfinite recursion over G,
then F is ∆1.

Proof. Suppose we define F (α) = G(F ¹ α) by transfinite recursion; formally,
we define

F (α) = X ⇐⇒ ∃f.∀β ∈ dom(f).f(β) = G(f ¹ β) ∧ f(α) = X.

Note that since G is Σ1, so is f(β) = G(f ¹ β) ∧ f(α) = X; hence so is
F (α) = X since the class of Σ1 formulas is closed under bounded universal
quantification and existential quantification. Also, the domain of F is the class
of ordinals, which is ∆1 (in fact, it is ∆0), so by Lemma 13.10 F is ∆1. SDG

Theorem 13.12. L is ∆1.

Proof. L is defined by transfinite recursion over a Σ1 function (it is left as an
exercise to check that Def is Σ1). SDG

Corollary 13.13. L is absolute for transitive models of ZF.

Definition 13.14. The order of a set X, denoted od(X), is the least α such
that X ∈ Lα+1. (It is not yet clear that this is well-defined for all sets, although
it turns out that it is.)

Definition 13.15. A class M is almost universal iff for every X ⊆ M , then
there is some Y ∈M for which X ⊆ Y .

Lemma 13.16. If M contains On (the class of ordinals) and is transitive and
almost universal, and (Sep)M (that is, M satisfies the axiom of Separation),
then (ZF )M .

Proof. Deferred to the next lecture. SDG

Lemma 13.17. L satisfies the conditions of Lemma 13.16.

Proof. We show each of the conditions in turn.
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• L is transitive, that is, Lα is transitive for all α. Since a union of transitive
sets is transitive, it suffices to show that Def(X) is transitive if X is.

Suppose X is transitive, and that y ∈ Def(X). Thus y ⊆ X. We want
to show that y ⊆ Def(X). Suppose z ∈ y, and consider the formula
ϕ(w) = w ∈ z. Then the set {w | 〈X,∈〉 |= ϕ(w) } ∈ Def(x); but since X
is transitive, every member of z is a member of X, so this set is equal to
z, and y ⊆ Def(X).

• To show that L contains On, we will in fact show the stronger statement
that Lα ∩ On = α, for all α. The proof is by induction on α. The base
case is easily verified.

In the limit case, On∩Lλ = On∩⋃
β<λ Lβ =

⋃
β<λ(On∩Lβ) =

⋃
β<λ β =

λ.

In the successor case, suppose On ∩ Lα = α. Since L is cumulative, we
need only show that α ∈ Lα+1; to see this, consider the defining formula
On(β) over Lα. Since On is ∆0, it is absolute, so it picks out exactly the
elements of α.

• L is almost universal. Given Y ⊆ L, consider

β = sup{od(x) + 1 | x ∈ Y }.

Then Y ⊆ Lβ ∈ Lβ+1.

• L satisfies Separation. Suppose x ∈ L, and consider the set

s = { y ∈ x | ϕL(y) }.

We must show that s is in L also. Consider β = od(x). By the Reflection
Principle, there is some α > β such that

∀y ∈ Lα.ϕ
L(y) ⇐⇒ ϕLα(y).

But since every y ∈ x is also in Lα, this means that s ∈ Lα+1; we may
take the defining formula to be ϕ(y) ∧ y ∈ x.

SDG
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