Lecture 18: The Constructible Hierarchy, Part III March 30, 2009

Proof of Lemma 13.16. We are given a transitive, almost universal class M which contains $O n$ and satisfies $S e p$; we wish to show that M satisfies $Z F$.

- $E x t^{M}$ since M is transitive.
- $R e g^{M}$ since M is a class.
- Pair ${ }^{M}$. Suppose $x \in M$ and $y \in M$. By pairing (in the universe) there is some $z=\{x, y\} \subseteq M$. Since M is almost universal, there is some $u \in M$ such that $z \subseteq u$. Now consider the set $\{w \in u \mid w=x \vee w=y\}$. This set is in M since M satisfies Separation; but this set is precisely the pair $\{x, y\}$ in M, since $w=x \vee w=y$ is Δ_{0}.
- Union ${ }^{M}$. Let $M(x)$. Then by the union axiom, $\exists \bigcup x . \forall z . z \in \bigcup x \Leftrightarrow \exists b \in$ $x . z \in b$.
Note that $y \in \bigcup x \Longrightarrow y \in M$, since M is transitive; so by the almost universality of M, we conclude there is some $u \in M$ for which $\bigcup x \subseteq u$. Now consider the formula $\varphi(y) \triangleq \exists b \in x . y \in b$.
Note that $S e p^{M}$ expands to

$$
\forall x \in M . \exists y \in M . \forall z \in M . z \in y \Leftrightarrow z \in x \wedge \varphi^{M}(z)
$$

So we may conclude that there is some $p \in M$ such that $\forall z \in M . z \in p \Leftrightarrow$ $z \in u \wedge \varphi^{M}(z)$, that is,

$$
p=\left\{z \in u \mid \varphi^{M}(z)\right\} .
$$

We want to show the union axiom relativized to M, that is, $\exists q \in M . \forall z \in$ $M . z \in q \Leftrightarrow \varphi^{M}(z)$. We claim that p witnesses this formula. The (\Rightarrow) direction holds by definition of p. The (\Leftarrow) direction holds since φ is Δ_{0}, so $\varphi^{M}(z)$ implies $\varphi(z)$ (since $z \in M$) and $\varphi(z)$ states that $z \in \bigcup x$; and $\bigcup x \subseteq u$.

- Powerset ${ }^{M}$. Let $M(x)$. Then by the power set axiom, $\mathcal{P}(x)$ exists in the universe. Note that this may not be the power set of x in M, since M does not necessarily contain all subsets of x. We want to show that

$$
v=\{w \in \mathcal{P}(x) \mid M(w)\}
$$

is in M. Since M is almost universal, there is some $u \in M$ for which $v \subseteq u$; then by comprehension in M we may form the set $\{z \in u \mid z \subseteq x\}$; this set is precisely $v\left(\subseteq\right.$ is $\left.\Delta_{0}\right)$.

- Infinity ${ }^{M}$. We stipulated that $O n \subseteq M$, so in particular we have $\omega \in M$, and ω is absolute.
- Replacement ${ }^{M}$. Suppose $\varphi(x, y)$ is a functional relation in M, that is, $\forall x \in M . \exists!y \in M . \wedge \varphi^{M}(x, y)$. We wish to show

$$
\forall w \in M . \exists u \in M . \forall x \in w . \exists y \in u . \varphi^{M}(x, y)
$$

This is the relativization to M of a weak form of the axiom of replacement. It shows that u contains the image of w under φ; we can use separation to construct the exact image of w under φ.
Let $w \in M$; the φ-image of w exists in the universe, call it v. Then by almost universality of M, there is some $u^{\prime} \in M$ for which $v \subseteq u^{\prime}$; then we are done.

Corollary 13.18. $Z F^{L}$.
Definition 13.19. A model M of ZF is an inner model iff M is a transitive class containing $O n$.

Remark. We have seen previously that there is a $\Delta_{1}-\mathrm{ZF}$ relation C such that $C(\alpha, x)$ iff $x=L_{\alpha}$. Hence $C(\alpha, x)$ is absolute for inner models of ZF.

Lemma 13.20. If M is an inner model of $Z F$, then $L^{M}=L$. (Where $L^{M}=$ $\left.\left\{y \mid(\exists \alpha, x . C(\alpha, x) \wedge y \in x)^{M}\right\}.\right)$

Proof. ???
Corollary 13.21. $Z F \vdash(V=L)^{L}$.
Proof. $(V=L)^{L}=\left(V^{L}=L^{L}\right)=(L=L)$.
Corollary 13.22. L is the smallest inner model of $Z F$.
Proof. Any inner model M contains $L^{M}=L$.
Remark. Recall that we are in the middle of trying to prove

$$
Z F \vdash Z F^{L}+A C^{L}+G C H^{L}
$$

by showing that

$$
Z F+" V=L " \vdash A C+G C H
$$

and

$$
Z F \vdash Z F^{L}+(V=L)^{L}
$$

We have now shown the second part; it remains only to show that $A C$ and $G C H$ hold in $Z F+$ " $V=L$ ".

Theorem 13.23. $Z F+(V=L) \vdash A C$.
Proof. There is a definable relation $<_{L}$ which is a global well-ordering of L (this is bizarre). Define $<_{L, \alpha}$ inductively as follows.

- $<_{L, 0}$ is the empty relation.
- At limit stages, we of course take the union of all previous stages.
- Now we define $<_{L, \alpha+1}$ in terms of $<_{L, \alpha}$. Note that every $x \in L_{\alpha+1}$ is a subset of L_{α} defined in terms of some $n \in \omega$, some $\bar{y} \in L_{\alpha}^{n}$, and some first-order formula φ. We can order formulas using a Gödel numbering. We can also order tuples lexicographically, so given an ordering of L_{α}, we can order elements of L_{α}^{n}. We now order $L_{\alpha+1}$ in the obvious way: for each $x \in L_{\alpha+1}$, choose (in some canonical order) the least n, least formula φ, and least tuple that define it. Also, we stipulate that everything at stage α comes before everything first arising at stage $\alpha+1$.

We then take $x<_{L} y$ to mean that there exists some α for which $x<_{L, \alpha} y$.
Hence every set in L has a well-ordering, so AC holds. (But moreover, the entire universe is well-ordered! This gives an intuitive reason to believe that $V=L$ is not really true in a Platonic sense.)

