Lecture 18: The Constructible Hierarchy, Part Ⅲ March 30, 2009

Proof of Lemma 13.16. We are given a transitive, almost universal class M which contains On and satisfies Sep; we wish to show that M satisfies ZF.

- Ext^M since M is transitive.
- Reg^M since M is a class.
- $Pair^M$. Suppose $x \in M$ and $y \in M$. By pairing (in the universe) there is some $z = \{x, y\} \subseteq M$. Since M is almost universal, there is some $u \in M$ such that $z \subseteq u$. Now consider the set $\{w \in u \mid w = x \lor w = y\}$. This set is in M since M satisfies Separation; but this set is precisely the pair $\{x, y\}$ in M, since $w = x \lor w = y$ is Δ_0 .
- $Union^M$. Let M(x). Then by the union axiom, $\exists \bigcup x . \forall z. z \in \bigcup x \Leftrightarrow \exists b \in x. z \in b$.

Note that $y \in \bigcup x \implies y \in M$, since M is transitive; so by the almost universality of M, we conclude there is some $u \in M$ for which $\bigcup x \subseteq u$. Now consider the formula $\varphi(y) \triangleq \exists b \in x.y \in b$.

Note that Sep^M expands to

$$\forall x \in M. \exists y \in M. \forall z \in M. z \in y \Leftrightarrow z \in x \land \varphi^M(z).$$

So we may conclude that there is some $p \in M$ such that $\forall z \in M. z \in p \Leftrightarrow z \in u \land \varphi^M(z)$, that is,

$$p = \{ z \in u \mid \varphi^M(z) \}.$$

We want to show the union axiom relativized to M, that is, $\exists q \in M. \forall z \in M. z \in q \Leftrightarrow \varphi^M(z)$. We claim that p witnesses this formula. The (\Rightarrow) direction holds by definition of p. The (\Leftarrow) direction holds since φ is Δ_0 , so $\varphi^M(z)$ implies $\varphi(z)$ (since $z \in M$) and $\varphi(z)$ states that $z \in \bigcup x$; and $\bigcup x \subseteq u$.

• Powerset^M. Let M(x). Then by the power set axiom, $\mathcal{P}(x)$ exists in the universe. Note that this may *not* be the power set of x in M, since M does not necessarily contain all subsets of x. We want to show that

$$v = \{ w \in \mathcal{P}(x) \mid M(w) \}$$

is in M. Since M is almost universal, there is some $u \in M$ for which $v \subseteq u$; then by comprehension in M we may form the set $\{z \in u \mid z \subseteq x\}$; this set is precisely $v (\subseteq is \Delta_0)$.

• Infinity^M. We stipulated that $On \subseteq M$, so in particular we have $\omega \in M$, and ω is absolute.

• Replacement^M. Suppose $\varphi(x, y)$ is a functional relation in M, that is, $\forall x \in M. \exists ! y \in M. \land \varphi^M(x, y)$. We wish to show

$$\forall w \in M. \exists u \in M. \forall x \in w. \exists y \in u. \varphi^M(x, y).$$

This is the relativization to M of a weak form of the axiom of replacement. It shows that u contains the image of w under φ ; we can use separation to construct the exact image of w under φ .

Let $w \in M$; the φ -image of w exists in the universe, call it v. Then by almost universality of M, there is some $u' \in M$ for which $v \subseteq u'$; then we are done.

Corollary 13.18. ZF^L .

Definition 13.19. A model M of ZF is an *inner model* iff M is a transitive class containing On.

Remark. We have seen previously that there is a Δ_1 -ZF relation C such that $C(\alpha, x)$ iff $x = L_{\alpha}$. Hence $C(\alpha, x)$ is absolute for inner models of ZF.

Lemma 13.20. If M is an inner model of ZF, then $L^M = L$. (Where $L^M = \{y \mid (\exists \alpha, x. \ C(\alpha, x) \land y \in x)^M \}$.)

SDG

SDG

Proof. ???

Corollary 13.21. $ZF \vdash (V = L)^L$.

Proof.
$$(V = L)^L = (V^L = L^L) = (L = L).$$

Corollary 13.22. L is the smallest inner model of ZF.

Proof. Any inner model M contains $L^M = L$.

Remark. Recall that we are in the middle of trying to prove

$$ZF \vdash ZF^L + AC^L + GCH^L$$
,

by showing that

$$ZF + "V = L" \vdash AC + GCH$$

and

$$ZF \vdash ZF^L + (V = L)^L$$
.

We have now shown the second part; it remains only to show that AC and GCH hold in ZF + "V = L".

Theorem 13.23. $ZF + (V = L) \vdash AC$.

Proof. There is a definable relation $<_L$ which is a global well-ordering of L (this is bizarre). Define $<_{L,\alpha}$ inductively as follows.

• $<_{L,0}$ is the empty relation.

- At limit stages, we of course take the union of all previous stages.
- Now we define $\langle L,\alpha+1$ in terms of $\langle L,\alpha$. Note that every $x \in L_{\alpha+1}$ is a subset of L_{α} defined in terms of some $n \in \omega$, some $\overline{y} \in L_{\alpha}^{n}$, and some first-order formula φ . We can order formulas using a Gödel numbering. We can also order tuples lexicographically, so given an ordering of L_{α} , we can order elements of L_{α}^{n} . We now order $L_{\alpha+1}$ in the obvious way: for each $x \in L_{\alpha+1}$, choose (in some canonical order) the least n, least formula φ , and least tuple that define it. Also, we stipulate that everything at stage α comes before everything first arising at stage $\alpha + 1$.

We then take $x <_L y$ to mean that there exists some α for which $x <_{L,\alpha} y$. Hence every set in L has a well-ordering, so AC holds. (But moreover, the entire universe is well-ordered! This gives an intuitive reason to believe that V = L is not really true in a Platonic sense.)