Lecture 19: The Constructible Hierarchy, Part IV April 1, 2009

Remark. We now proceed to prove the generalized continuum hypothesis under the assumption that V = L.

Lemma 13.24. For every infinite ordinal α , card $(L_{\alpha}) = \text{card}(\alpha)$.

Proof. First, we note that $L_{\omega} = V_{\omega}$, and $\operatorname{card}(V_{\omega}) = \operatorname{card}(\omega) = \omega$. Also, it is clear that $\operatorname{card}(L_{\alpha}) \ge \operatorname{card}(\alpha)$ since $\alpha \subseteq L_{\alpha}$.

In the successor case, we want to show that $\operatorname{card}(L_{\alpha+1}) = \operatorname{card}(Def(L_{\alpha})) = \operatorname{card}(\alpha+1) = \operatorname{card}(\alpha)$. This amounts to showing that Def preserves cardinality. But every element of $Def(L_{\alpha})$ is a formula together with some finite number of witnesses from L_{α} ; hence its size is at most

$$\aleph_0 \times \sum_{n \in \omega} (\operatorname{card}(L_\alpha))^n = \operatorname{card}(L_\alpha).$$

Definition 13.25. o(M) is the least γ for which $\gamma \notin M$. For transitive M, $o(M) = \{\gamma \mid \gamma \in M\}$.

Remark. Recall that the GCH says that $2^{\kappa} = \kappa^+$ for all infinite κ . To show that it holds in L, we must show that every subset of L_{κ} occurs at some level prior to L_{κ^+} . If we can show that $od(x) < \kappa^+$ for every $x \leq \kappa$, then $2^{\kappa} \leq \kappa^+$ (we already know that $2^{\kappa} \geq \kappa^+$ by Cantor's Theorem). In particular, we will show that for every $x \subseteq L_{\alpha}$, $od(x) < |\alpha|^+$.

Recall that $\alpha \mapsto L_{\alpha}$ is Δ_1 -ZF. So there is some sentence θ for which $\alpha \mapsto L_{\alpha}$ is Δ_1 - θ , that is, θ proves the equivalence of the Σ_1 and Π_1 forms of $\alpha \mapsto L_{\alpha}$. Given this, we can prove the following lemma.

Lemma 13.26. There is a sentence θ such that $ZF + (V = L) \vdash \theta$ and for every transitive M,

$$M \models \theta \implies \exists \alpha. \lim(\alpha) \land M = L_{\alpha}.$$

Proof. Let ψ be the function $\alpha \mapsto L_{\alpha}$. Then $\psi(\alpha, x)$ is absolute for transitive models of a finite fragment θ' of ZF. Then let

$$\theta = \theta' \wedge (V = L).$$

If $M \models \theta$, the claim is that $M = L_{\alpha}$ for some $\lim(\alpha)$. In particular, we claim that $M = L_{o(M)}$.

- Since $\alpha \mapsto \alpha + 1$ is absolute for M, o(M) must be a limit.
- $L_{\alpha} \subseteq M$. Since $\lim(\alpha)$, $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$, and $\beta \in M$ for all $\beta < \alpha$. $\psi(\beta, x)$ is absolute for M, so $L_{\beta} \in M$ for all $\beta < \alpha$. Hence, $\bigcup_{\beta < \alpha} L_{\beta} \subseteq M$ by transitivity of M.

• $M \subseteq L_{\alpha}$. Note that $M \models V = L$. For $\beta < \alpha$, $(L_{\beta})^M = L_{\beta}$; hence $M \subseteq \bigcup_{\beta < \alpha} L_{\beta}$.

SDG

Theorem 13.27. For every x, α , if L(x) and $x \subseteq L_{\alpha}$ then there is some $\beta < |\alpha|^+$ with $x \in L_{\beta}$.

Remark. We first remark that this theorem implies the GCH; note that if $x \subseteq \kappa$ then $x \subseteq L_{\kappa}$. This theorem says that every subset of L_{α} gets constructed at some stage prior to $|\alpha|^+$; hence the *set* of all such subsets must occur at stage $|\alpha|^+$.

Proof. Observe that θ is a consequece of V = L. Since θ is a single sentence, we can apply the Reflection Principle.

Suppose $x \subseteq L_{\alpha}$ and L(x); hence there is some δ with $x \in L_{\delta}$. Pick $\beta > \delta$, $\beta > \alpha$, $\lim(\beta)$ from the club class of ordinals reflecting θ in L. Hence $x \in L_{\beta}$, and we note that $L_{\alpha} \subseteq L_{\beta}$.

Since AC holds in L, by the Löwenheim-Skolem theorem there is some $N \leq L_{\beta}$ such that $L_{\alpha} \cup \{x\} \subseteq N$ and $|N| = \operatorname{card}(\alpha)$; we also note that $N \models \theta$ since $N \leq L_{\beta}$. Also, observe that $L_{\alpha} \cup \{x\}$ is transitive, since $x \subseteq L_{\alpha}$. (However, N might not be transitive.)

But N is extensional and well-founded, so by the Mostowski collapsing theorem, it is isomorphic to a unique transitive set M, and the isomorphism preserves $L_{\alpha} \cup \{x\}$ (the Mostowski isomorphism is the identity on any transitive sets).

Hence $M \models \theta$ since it is isomorphic to N. So $M = L_{\gamma}$, $\lim(\gamma)$, with $\alpha < \gamma < |\alpha|^+$ ($\alpha < \gamma$ since $L_{\alpha} \subseteq L_{\gamma}$; $\gamma < |\alpha|^+$ since M has cardinality α).