
Lecture 20: Independence of CH, part I
April 6, 2009

14 Independence of CH

Remark. We will now spend the next few lectures proving the independence of
CH from ZFC, as shown by Cohen in 1963 by the (in)famous “method of forc-
ing.” In particular, we will show that Con(ZFC) =⇒ Con(ZFC+¬CH), since
we have already shown (via the Constructible Hierarchy) that Con(ZFC) =⇒
Con(ZFC + CF ).

The general idea is that we will start with a countable transitive model M
of ZFC (hereafter, “countable transitive model of ZFC” will be abbreviated
“ctm”). (We note that for every finite T ⊆ ZFC, there is some countable
transitive model of T , via the Reflection principle, Löwenheim-Skolem, and
Mostowski.)

Then we will construct a set G 6∈ M and a ctm M [G] such that

• G ∈ M [G],

• o(M) = o(M [G]),

• M ⊆ M [G], and

• M [G] is the least such extension of M .

Then note that M [G] |= ZFC + V 6= L (since LM = LM [G]).
Now suppose ZFC +¬CH ` 0 = 1. Then by compactness there is a finite T

such that T + ¬CH ` 0 = 1. Then we will show that if M is a ctm for T ⊆ T ′,
then M [G] is a ctm for T ′ ∪ ¬CH. (T ′ is T plus the finite amount of stuff we
need to throw in to make the various proofs involved go through).

Remark. Let M be a ctm. We will now consider partial orders 〈P,≤, 1〉 ∈ M
with a maximal element 1. Note that in what follows, P will always refer to
an arbitrary such partial order with maximal element. First, let’s look at some
examples, which will come in handy later and serve to motivate some of the
definitions to come.

Let FP (X,Y ) be the set of finite partial functions from X to Y . This forms
a poset with reverse extension as the ordering (that is, p ≤ q ⇐⇒ q ⊆ p) and
the empty function as the maximal element. The idea is that partial functions
specify constraints on some sort of model, and p ≤ q holds exactly when all
models that satisfy p also satisfy q (but p may be more restrictive than q, so
fewer models may satisfy it).

A particular example of this sort of structure is FP (ω, 2), the set of finite
partial functions from ω to 2. We can think of elements of this partial order
as specifying conditions on a binary real number (the values of some places are
specified, and some are not).
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Definition 14.1. Let p, q ∈ P. Then p is compatible with q, denoted p > q, if
there exists r ∈ P such that r ≤ p and r ≤ q.

p is incompatible with q, denoted p ⊥ q, iff they are not compatible.

Remark. Compatibility of p and q is just a formal way of saying that p and q
don’t conflict; that is, they do not represent contradictory constraints.

Definition 14.2. A set X ⊆ P is upward closed iff for every p ∈ X and every
q ∈ P, if p ≤ q then q ∈ X.

Definition 14.3. G ⊆ P is a filter iff

• Any two elements of G are compatible, and

• G is upward closed.

Definition 14.4. D ⊆ P is dense in P iff for every p ∈ P, there exists some
q ∈ D for which q ≤ p.

Remark. As an example, the set Dn = { p | n ∈ dom(p) } is dense in FP (ω, 2)
for all n.

Definition 14.5. G ⊆ P is P-generic over M iff for every P-dense D ∈ M ,

• G ∩D 6= ∅, and

• G is a filter.

Lemma 14.6. For every ctm M , P ∈ M and p ∈ P, there is some G ⊆ P with
p ∈ G such that G is P-generic over M .

Proof. Since M is countable, we may enumerate the dense sets in M ; call them
D1, D2, D3, . . . .

Now let p0 = p, and for each i + 1 pick pi+1 ∈ Di+1 such that pi+1 ≤ pi

(such a pi+1 must exist since Di+1 is dense).
Let G be the upward closure of {p0, p1, . . . }. Then G is a filter by tran-

sitivity of ≤, and its intersection with every dense set in M is non-empty by
construction; hence G is a P-generic set over M which contains p. SDG

Remark. Consider again the example of FP (ω, 2). We already noted that the
family of sets Dn defined above are dense. Note also that Dn ∈ M for any ctm
M , which we can show by various tedious absoluteness arguments. (We must
also note that FP (ω, 2) ∈ M , but this can also be seen by various straightfor-
ward absoluteness arguments.)

By Lemma 14.6 we know that there is some set G which is FP (ω, 2)-generic
over M . Now consider f =

⋃
G. Since G is a filter, f is a partial function

ω → 2 (G does not contain any incompatible elements, so taking its union does
not result in any disagreements, and f is therefore functional).

Moreover, since Dn ∈ M for all n and G is FP (ω, 2)-generic, we must have
n ∈ dom(f) for all n (G must contain some element of Dn for every n). Hence
f is actually a total function ω → 2.

Two big questions immediately spring to mind: is G ∈ M? And is f ∈ M?
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Lemma 14.7. Suppose every element of P has incompatible extensions; that is,
for every p ∈ P, there exist q, r ∈ P such that q ≤ p, r ≤ p, and q ⊥ r. Then if
G is P-generic over M , G 6∈ M .

Proof. Suppose otherwise, that is, G ∈ M . Then P − G ∈ M . We claim that
P − G is dense: every p ∈ P has incompatible extensions, which can’t both be
in G, so there is at least one q ≤ p with q ∈ P−G. But then, by definition of a
P-generic set, we have G ∩ (P−G) 6= ∅, which is absurd. SDG

Remark. For example, FP (ω, 2) clearly has the property described in the above
lemma; given some finite partial function p, pick some n 6∈ dom(p), and define
q and r to be extensions of p which send n to 0 and 1, respectively. So the G
described in the previous remark is not an element of M . Moreover f =

⋃
G 6∈

M as well; if it were, we would be able to construct G in M .
We can now restate our goal: given a ctm M , some partial order P ∈ M ,

and some G which is P-generic over M , we want to show that there is a ctm
M [G] satisfying the conditions in the opening remarks.

Remark. Consider again FP (X, Y ) ∈ M , the poset of finite partial functions
from X to Y . (We assume that X ∈ M and Y ∈ M .) Assume further that X
is infinite, and Y 6= ∅.

We know that there exists a G which is FP (X, Y )-generic over M . Again,
let f =

⋃
G. By an argument similar to that before, f is a partial function from

X to Y since G is a filter. Also, for every a ∈ X we may define Da = { p | a ∈
dom(p) } which is dense, so again f is in fact a total function.

Moreover, we may also define Db = { p | b ∈ rng(p) }; these sets are also
dense since X is infinite (we can always pick an unused element of the domain
to map to the chosen element of the range). Thus, we conclude that f is
surjective.

For example, we can look at FP (ω, (ℵω)M ). Following the above construc-
tion, we get a surjective function that “collapses” ℵω in M [G]. More on this in
the next lecture.
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