Lecture 21: Independence of CH, part II
 April 8, 2009

Theorem 14.8. $M[G] \models Z F C+\neg C H$.
Remark. Of course, this proof is modulo a number of lemmas that we haven't proved yet (in fact, we haven't even yet defined $M[G]$!). But we are now at a point to give the high-level structure of the proof, and fill in the details later.

Proof. Given a $\operatorname{ctm} M$, consider $F P(\kappa \times \omega, 2)$ where $\left(\kappa>\aleph_{1}\right)^{M}$ and $\operatorname{Card}^{M}(\kappa)$, and let G be $F P(\kappa \times \omega, 2)$-generic over M. Then as noted previously, $F=\bigcup G$ is a total, surjective function $\kappa \times \omega \rightarrow 2$.
(Note that $\kappa \in M$ is a cardinal in M, that is, $\operatorname{Card}^{M}(\kappa)$. It may not be a cardinal in the universe! In fact, since M is countable and transitive, κ definitely isn't a cardinal in the universe unless $\kappa=\omega$.)

Now define a "curried" version of F,

$$
f_{\alpha}(n)=F(\langle\alpha, n\rangle),
$$

and for any $\alpha \neq \beta$, define
$D_{\alpha \beta}=\{p \in \mathbb{P} \mid \exists n .(\langle\alpha, n\rangle \in \operatorname{dom}(p) \wedge\langle\beta, n\rangle \in \operatorname{dom}(p) \wedge p(\langle\alpha, n\rangle) \neq p(\langle\beta, n\rangle))\}$.
That is, $D_{\alpha \beta}$ is the set of partial functions which disagree at $\langle\alpha, n\rangle$ and $\langle\beta, n\rangle$ for some n. Note that if $G \cap D_{\alpha \beta} \neq \emptyset$, then $f_{\alpha} \neq f_{\beta}$, since there will be some n for which f_{α} and f_{β} disagree.

However, $D_{\alpha \beta}$ is dense for all distinct $\alpha, \beta<\kappa$: given any $p \in \mathbb{P}$, we may pick some $n \notin \operatorname{dom}(p)$ and construct $q \in D_{\alpha \beta}$ to be p extended with $q(\langle\alpha, n\rangle)=0$ and $q(\langle\beta, n\rangle)=1$. It is also not hard to see that $D_{\alpha \beta} \in M$. But G has nonempty intersection with every dense set in M; therefore, f_{α} and f_{β} are distinct for every distinct α and β.

Thus, we have a κ-sized collection of binary valued functions on ω, and hence $2^{\omega}>\kappa$: we may pick $\kappa=\aleph_{2}$ to observe that the CH is not true in $M[G]$.

Remark. There is one teensy worry with the last sentence of the above proofwhat if $M[G]$ collapses cardinals? That is, although κ is a certain cardinal in M, we may worry that it gets collapsed to something smaller in $M[G]$, so that the above argument says nothing in particular about the CH in $M[G]$. We will see that this is not the case, but proving it will take considerable effort.

Lemma $14.9(M[G]$ preserves cardinals). If $\kappa>\omega$ and $\kappa<o(M)$ and $M \models$ $\operatorname{Card}(\kappa)$, then $M[G] \models \operatorname{Card}(\kappa)$.

Remark. This is enough to show not only that κ is still a cardinal in $M[G]$, but that it is a cardinal just as big in $M[G]$ as in M (that is, it can't be collapsed to a smaller cardinal). This follows from the fact that the notion of being greater than some other cardinal is absolute.

To prove this lemma, we'll first need a number of definitions and sublemmas.

Definition 14.10. $X \subseteq \mathbb{P}$ is an antichain iff $p \perp q$ for every distinct $p, q \in X$.
Definition 14.11. We say that \mathbb{P} has the $c c c$ (embarrassingly, this stands for "countable chain condition") iff every antichain $X \subseteq \mathbb{P}$ is countable.

Definition 14.12. Z is a quasi-disjoint collection of sets iff there exists an a such that $u \cap v=a$ for every pair of distinct elements $u, v \in Z$.

Lemma 14.13. Every uncountable collection of finite sets has an uncountable, quasi-disjoint subset.

Proof. Let S be an uncountable collection of finite sets. Without loss of generality, we may assume that every $u \in S$ has cardinality n, for some $n \in \omega$ (note that for some i,

$$
S_{i}=\{u \in S| | u \mid=i\}
$$

is uncountable).
The proof is by induction on n. The base case, $n=1$, is easy; we may just take $a=\emptyset$.

If $n>1$, there are two cases to consider.

- First, suppose that for some e, there are uncountably many $u \in S$ with $e \in u$. Let T denote the set of all such u, and let

$$
T^{-}=\{u-\{e\} \mid u \in T\} .
$$

This is an uncountable collection of sets of size $n-1$, so by the inductive hypothesis, there is an uncountable, quasi-disjoint subset of T^{-}, call it T^{*}. But we may then form the set $Q=\left\{u \cup\{e\} \mid u \in T^{*}\right\}$, which is an uncountable subset of T which is quasi-disjoint-if the common intersection of the elements of T^{*} is a, the common intersection of the elements of Q is $a \cup\{e\}$.

- Now suppose that there is no element e which occurs in uncountably many $u \in S$. For each $e \in \bigcup S$, let T_{e} denote the set of all $u \in S$ which contain e. We now recursively construct a sequence of pairwise disjoint $u_{\alpha} \in S$ for $\alpha<\aleph_{1}$ as follows.
Pick $u_{0} \in S$ arbitrarily. Now for each $0 \gamma<\aleph_{1}$, consider the set

$$
T_{\gamma}=\left\{T_{e} \mid e \in u_{\beta} \text { for some } \beta<\gamma\right\} .
$$

T_{γ} is a countable union of countable sets (there are countably many u_{β}, each of which is finite, and by hypothesis each T_{e} is countable), and hence countable. Therefore $S-T_{\gamma}$ is nonempty and we may arbitrarily pick $u_{\gamma} \in S-T_{\gamma}$.

