Lecture 21: Independence of CH, part II April 8, 2009

Theorem 14.8. $M[G] \models ZFC + \neg CH$.

Remark. Of course, this proof is modulo a number of lemmas that we haven't proved yet (in fact, we haven't even yet defined M[G]). But we are now at a point to give the high-level structure of the proof, and fill in the details later.

Proof. Given a ctm M, consider $FP(\kappa \times \omega, 2)$ where $(\kappa > \aleph_1)^M$ and $Card^M(\kappa)$, and let G be $FP(\kappa \times \omega, 2)$ -generic over M. Then as noted previously, $F = \bigcup G$ is a total, surjective function $\kappa \times \omega \to 2$.

(Note that $\kappa \in M$ is a cardinal in M, that is, $Card^{M}(\kappa)$. It may not be a cardinal in the universe! In fact, since M is countable and transitive, κ definitely isn't a cardinal in the universe unless $\kappa = \omega$.)

Now define a "curried" version of F,

$$f_{\alpha}(n) = F(\langle \alpha, n \rangle),$$

and for any $\alpha \neq \beta$, define

 $D_{\alpha\beta} = \{ p \in \mathbb{P} \mid \exists n. (\langle \alpha, n \rangle \in \operatorname{dom}(p) \land \langle \beta, n \rangle \in \operatorname{dom}(p) \land p(\langle \alpha, n \rangle) \neq p(\langle \beta, n \rangle)) \}.$

That is, $D_{\alpha\beta}$ is the set of partial functions which disagree at $\langle \alpha, n \rangle$ and $\langle \beta, n \rangle$ for some n. Note that if $G \cap D_{\alpha\beta} \neq \emptyset$, then $f_{\alpha} \neq f_{\beta}$, since there will be some n for which f_{α} and f_{β} disagree.

However, $D_{\alpha\beta}$ is dense for all distinct $\alpha, \beta < \kappa$: given any $p \in \mathbb{P}$, we may pick some $n \notin \text{dom}(p)$ and construct $q \in D_{\alpha\beta}$ to be p extended with $q(\langle \alpha, n \rangle) = 0$ and $q(\langle \beta, n \rangle) = 1$. It is also not hard to see that $D_{\alpha\beta} \in M$. But G has nonempty intersection with every dense set in M; therefore, f_{α} and f_{β} are distinct for every distinct α and β .

Thus, we have a κ -sized collection of binary valued functions on ω , and hence $2^{\omega} > \kappa$: we may pick $\kappa = \aleph_2$ to observe that the CH is not true in M[G].

Remark. There is one teensy worry with the last sentence of the above proof what if M[G] collapses cardinals? That is, although κ is a certain cardinal in M, we may worry that it gets collapsed to something smaller in M[G], so that the above argument says nothing in particular about the CH in M[G]. We will see that this is not the case, but proving it will take considerable effort.

Lemma 14.9 (M[G] preserves cardinals). If $\kappa > \omega$ and $\kappa < o(M)$ and $M \models Card(\kappa)$, then $M[G] \models Card(\kappa)$.

Remark. This is enough to show not only that κ is still a cardinal in M[G], but that it is a cardinal just as big in M[G] as in M (that is, it can't be collapsed to a smaller cardinal). This follows from the fact that the notion of being greater than some other cardinal is absolute.

To prove this lemma, we'll first need a number of definitions and sublemmas.

Definition 14.10. $X \subseteq \mathbb{P}$ is an *antichain* iff $p \perp q$ for every distinct $p, q \in X$.

Definition 14.11. We say that \mathbb{P} has the *ccc* (embarrassingly, this stands for "countable chain condition") iff every antichain $X \subseteq \mathbb{P}$ is countable.

Definition 14.12. Z is a quasi-disjoint collection of sets iff there exists an a such that $u \cap v = a$ for every pair of distinct elements $u, v \in Z$.

Lemma 14.13. Every uncountable collection of finite sets has an uncountable, quasi-disjoint subset.

Proof. Let S be an uncountable collection of finite sets. Without loss of generality, we may assume that every $u \in S$ has cardinality n, for some $n \in \omega$ (note that for some i,

$$S_i = \{ u \in S \mid |u| = i \}$$

is uncountable).

The proof is by induction on n. The base case, n = 1, is easy; we may just take $a = \emptyset$.

If n > 1, there are two cases to consider.

• First, suppose that for some e, there are uncountably many $u \in S$ with $e \in u$. Let T denote the set of all such u, and let

$$T^{-} = \{ u - \{ e \} \mid u \in T \}.$$

This is an uncountable collection of sets of size n - 1, so by the inductive hypothesis, there is an uncountable, quasi-disjoint subset of T^- , call it T^* . But we may then form the set $Q = \{ u \cup \{e\} \mid u \in T^* \}$, which is an uncountable subset of T which is quasi-disjoint—if the common intersection of the elements of T^* is a, the common intersection of the elements of Q is $a \cup \{e\}$.

• Now suppose that there is no element e which occurs in uncountably many $u \in S$. For each $e \in \bigcup S$, let T_e denote the set of all $u \in S$ which contain e. We now recursively construct a sequence of pairwise disjoint $u_{\alpha} \in S$ for $\alpha < \aleph_1$ as follows.

Pick $u_0 \in S$ arbitrarily. Now for each $0\gamma < \aleph_1$, consider the set

$$T_{\gamma} = \{ T_e \mid e \in u_{\beta} \text{ for some } \beta < \gamma \}.$$

 T_{γ} is a countable union of countable sets (there are countably many u_{β} , each of which is finite, and by hypothesis each T_e is countable), and hence countable. Therefore $S - T_{\gamma}$ is nonempty and we may arbitrarily pick $u_{\gamma} \in S - T_{\gamma}$.