Lemma 14.14. If Y is countable, then FP(X, Y) has the ccc.

Proof. Suppose Y is countable and consider any uncountable set of finite partial functions

$$P = \{ p_{\alpha} \mid \alpha < \aleph_1 \} \subseteq FP(X, Y).$$

We wish to show that P is not an antichain.

Let Z = dom[P]. By Lemma 14.13, there is some $Z' \subseteq Z$ which is uncountable and quasi-disjoint. Let d be the common intersection of the elements of Z', and consider the set of functions ${}^{d}Y$. This set is countable since Y is countable and d is finite.

For $p,q \in FP(X,Y)$, define $p \sim q$ iff $p \upharpoonright d = q \upharpoonright d$, and $P' = \{p_{\alpha} \mid dom(p_{\alpha}) \in Z'\}$. Consider P' / \sim : each equivalence class is represented by some function $d \to Y$, so there are countably many equivalence classes. However, P' is uncountable, so there must be some uncountable equivalence class, call it B. But any two $p, q \in B$ are compatible, since they agree on d, the intersection of their domains. Hence P is not an antichain: in fact, it must contain *uncountably many* compatible elements!

Lemma 14.15 (Approximation Lemma). If $(\mathbb{P} \text{ has the } ccc)^M$, M is a ctm, $X, Y \in M$ and $f: X \to Y \in M[G]$, then there is an $F: X \to \mathcal{P}(Y) \in M$ such that for every $a \in X$, $f(a) \in F(a)$ and $(F(a) \text{ is countable})^M$.

Remark. This lemma essentially says that given any function $f \in M[G]$, we may "approximate" it in M, even though f itself may not be an element of M. We defer the proof of this lemma to the remainder of the semester.

Lemma 14.16. If $(\mathbb{P} \text{ has the } ccc)^M$ and M is a ctm, then $Card^M(\kappa)$ implies $Card^{M[G]}(\kappa)$.

Remark. Note that $Card(\kappa)$ denotes " κ is a cardinal"; not to be confused with $card(\kappa)$, the cardinality of κ . We also note that this lemma is only interesting for uncountable κ , since finite cardinals and ω are absolute; we don't have to worry about those getting collapsed in M[G].

Proof. Suppose, by way of contradiction, that $Card^{M}(\kappa)$ but there is some infinite $\beta < \kappa$ and some $f \in M[G]$ with $f : \beta \xrightarrow[]{onto} \kappa$. By Lemma 14.15, there is some $F : \beta \to \mathcal{P}(\kappa) \in M$ for which $\bigcup_{k \in \mathcal{N}} \operatorname{rng}(F) = \kappa$.

By Lemma 14.15, there is some $F : \beta \to \mathcal{P}(\kappa) \in M$ for which $\bigcup \operatorname{rng}(F) = \kappa$. But now $(\operatorname{card}(\kappa) = \kappa = \operatorname{card}(\bigcup \operatorname{rng}(F)) \leq \operatorname{card}(\beta) \times \aleph_0 = \operatorname{card}(\beta) < \kappa)^M$, a contradiction.

Definition 14.17. τ is a \mathbb{P} -name iff τ is a relation and for every $\langle \sigma, p \rangle \in \tau$, σ is a \mathbb{P} -name and $p \in \mathbb{P}$.

Remark. This definition might seem circular, but we can formalize it by induction on the transitive closure of τ .

Definition 14.18. Suppose τ is a \mathbb{P} -name and $G \subseteq \mathbb{P}$. Then define

$$\operatorname{val}(\tau, G) = \{ \operatorname{val}(\sigma, G) \mid \exists p \in G. \langle \sigma, p \rangle \in \tau \}$$

Definition 14.19. $V^{\mathbb{P}}$ denotes the class of all \mathbb{P} -names. $M^{\mathbb{P}}$ denotes $M \cap V^{\mathbb{P}}$, which is equal to $(V^{\mathbb{P}})^M$ because of some lemma about recursion and absoluteness.

Remark. Let's look quickly at a few examples.

- Of course, $\emptyset \in V^{\mathbb{P}}$ trivially; val $(\emptyset, G) = \emptyset$ for all G.
- Also, consider $\tau = \{ \langle \emptyset, p \rangle \} \in V^{\mathbb{P}}$. We have

$$\operatorname{val}(\tau, G) = \begin{cases} \{\emptyset\} & p \in G \\ \emptyset & \text{otherwise.} \end{cases}$$

- $\rho = \{ \langle \emptyset, 1_{\mathbb{P}} \rangle \}$ is also a valid \mathbb{P} -name; val $(\rho, G) = \{ \emptyset \}$ for all filters G.
- We may generalize this to

$$\dot{x} = \{ \langle \dot{y}, 1_{\mathbb{P}} \rangle \mid y \in x \}.$$

We can consider \dot{x} to be a "canonical name" for x: val $(\dot{x}, G) = x$ for every filter G.

Definition 14.20. Given a ctm M, $\mathbb{P} \in M$, and a G which is \mathbb{P} -generic over M, define

$$M[G] = \{ \operatorname{val}(\tau, G) \mid \tau \in M^{\mathbb{P}} \}.$$

Remark. By the above remark concerning canonical names, we observe that $M \subseteq M[G]$.