Lecture 23: Independence of CH, part IV April 15, 2009

Remark. In the previous lecture, we defined the generic extension M[G] of any ctm M with respect to a set G which is \mathbb{P} -generic over M. Today, we will begin to verify that it has the required properties. In particular:

- $M \subseteq M[G]$. (We showed this in the previous lecture.)
- $G \in M[G]$.
- M[G] is transitive.
- o(M) = o(M[G]).
- M[G] is a ctm.
- M[G] is the least extension of M with these properties.

Lemma 14.21. $G \in M[G]$.

Proof. Consider the set

$$\Delta = \{ \langle \dot{p}, p \rangle \mid p \in \mathbb{P} \}.$$

We have already seen that $\dot{x} \in M$ whenever $x \in M$, so $\Delta \in M$ by pairing and replacement (M is a ctm). Also, Δ is clearly a \mathbb{P} -name. But val $(\Delta, G) = G$, so we conclude that $G \in M[G]$.

Lemma 14.22. M[G] is the least extension of M with the required properties.

Proof. Suppose there is some ctm N such that $M \subseteq N$ and $G \in N$. $M^{\mathbb{P}} \subseteq N$ since $M \subseteq N$, so $val(\tau, G) \in N$ for all $\tau \in M^{\mathbb{P}}$ (val is definable in M[G], and absolute since it is defined by recursion). Therefore, $M[G] \subseteq N$.

Remark. From now on we will use the abbreviation τ_G in place of val (τ, G) .

Lemma 14.23. M[G] is transitive.

Proof. Suppose $x \in M[G]$ and $y \in x$. By definition of M[G], there is some $\tau \in M^{\mathbb{P}}$ for which $x = \tau_G$. Expanding out the definition of τ_G , we have

$$x = \tau_G = \{ \sigma_G \mid \exists p \in G. \langle \sigma, p \rangle \in \tau \}.$$

Therefore $y = \sigma_G$ for some $\sigma \in V^{\mathbb{P}}$, but since M is transitive, $\sigma \in M$ as well (since τ is). Hence $y \in M[G]$.

Lemma 14.24. o(M) = o(M[G]).

Proof. $o(M) \leq o(M[G])$ follows directly from the fact that $M \subseteq M[G]$.

To show that $o(M[G]) \leq o(M)$, we show that $\operatorname{rank}(\tau_G) \leq \operatorname{rank}(\tau)$, by structural induction on τ . If $\tau = \emptyset$, then $\operatorname{rank}(\tau_G) = \operatorname{rank}(\emptyset) = 0$.

In the inductive case,

$$\operatorname{rank}(\tau_G) = \operatorname{rank}(\{ \sigma_G \mid \exists p \in G. \langle \sigma, p \rangle \in \tau \}) \\ \leq \operatorname{rank}(\{ \sigma_G \mid \langle \sigma, p \rangle \in \tau \}) \\ \leq \operatorname{rank}(\{ \sigma \mid \langle \sigma, p \rangle \in \tau \}) \\ \leq \operatorname{rank}(\{ \langle \sigma, p \rangle \mid \langle \sigma, p \rangle \in \tau \}) \\ = \operatorname{rank}(\tau).$$
(IH)

Now we note that if $\alpha \in M[G]$, then there is some $\tau \in M$ for which $\tau_G = \alpha$, and $\alpha = \operatorname{rank}(\alpha) \leq \operatorname{rank}(\tau) = \beta$, and that $\operatorname{rank}(\tau) \in M$ whenever $\tau \in M$. (??)

Remark. It remains to show that M[G] is a ctm; but before we do that, we talk about the method of forcing, and use it to prove the Approximation Lemma (Lemma 14.15).

Definition 14.25. Let M be a ctm and $\mathbb{P} \in M$ a poset with a maximal element. Suppose $\varphi(x_1, \ldots, x_n)$ is some formula and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$. Then p forces $\varphi(\tau_1, \ldots, \tau_n)$, written

$$p \Vdash_{M,\mathbb{P}} \varphi(\tau_1,\ldots,\tau_n)$$

iff for every G which is a \mathbb{P} -generic extension over M with $p \in G$,

$$M[G] \models \varphi(\tau_{1G}, \dots, \tau_{nG}).$$

Remark. Often M and \mathbb{P} will be clear from the context and we omit the subscripts on \Vdash .

Remark. We now state two essential (and somewhat surprising) results about forcing; their proofs will be put off until later.

Theorem 14.26 (Truth). $M[G] \models \varphi(\tau_{1G}, \ldots, \tau_{nG})$ if and only if there is some $p \in G$ for which $p \Vdash \varphi(\tau_1, \ldots, \tau_n)$.

Theorem 14.27 (Definability). For every $\varphi(x_1, \ldots, x_n)$, there is a formula denoted

 $p \Vdash^* \varphi(x_1, \ldots, x_n)$

such that for all $\tau_1, \ldots, \tau_n, p \Vdash \varphi(\tau_1, \ldots, \tau_n)$ if and only if $M \models (p \Vdash^* \varphi(\tau_1, \ldots, \tau_n))$.

Remark. In other words, the notion of forcing is definable within M itself. This is rather surprising, since the definition of forcing quantifies over all generic extensions, which are not elements of M!

Lemma 14.28 (Preservation of forcing). For all formulas φ and $s, t \in \mathbb{P}$, if $s \leq t$ and $t \Vdash \varphi$, then $s \Vdash \varphi$.

Proof. Suppose $s \nvDash \varphi$ —that is, there is some G \mathbb{P} -generic over M with $s \in G$ and $M[G] \nvDash \varphi$. But since G is a filter, it is upward closed; hence $s \in G$ implies $t \in G$, which is a contradiction since $t \Vdash \varphi$.

Remark. We now return to prove the Approximation Lemma (Lemma 14.15).

Proof of Lemma 14.15. Let $\tau \in M^{\mathbb{P}}$ such that $\tau_G = f$. By Theorem 14.26 (Truth), there is some $p \in G$ such that $p \Vdash \tau : \dot{x} \to \dot{y}$.

Now, for each $a \in X$, define

$$F(a) = \{ b \mid \exists q \le p. \ q \Vdash \tau(\dot{a}) = b \}.$$

Then by definability of forcing in M (Theorem 14.27) and the fact that M is a ctm, we have that $F \in M$.

Now suppose f(a) = b; we wish to show that $b \in F(a)$. Since f(a) = b, in particular we have that $M[G] \models \tau_G(a) = b$. Hence, by Truth, there is some $r \in G$ such that $r \Vdash \tau(\dot{a}) = \dot{b}$. Since G is a filter and $p, r \in G$, there is some $q \in G$ for which $q \leq p$ and $q \leq r$. By Lemma 14.28, $q \Vdash \tau(\dot{a}) = \dot{b}$. But then $b \in F(a)$ by definition.

Finally, we show that F(a) is countable in M for every $a \in X$. Since M is a ctm, it satisfies AC, so there is a choice function $g: F(a) \to G$ such that $g(b) \leq p$ and $g(b) \Vdash \tau(\dot{a}) = \dot{b}$ for each $b \in F(a)$; that is, for each b, g picks a witness of the fact that $b \in F(a)$. (We note that for each b, the set of q which witness $b \in F(a)$ is in M by definability of forcing and the fact that M is a ctm.)

We claim that for any two distinct $b, b' \in F(a)$, $g(b) \perp g(b')$. (Note that this also implies that g is injective.) To see this, suppose $b \neq b'$ and $g(b) \top g(b')$. Then since G is a filter, there exists some r for which $r \leq g(b)$ and $r \leq g(b')$. But then by preservation of forcing,

$$r \Vdash \tau : \dot{x} \to \dot{y} \text{ (since } r \leq g(b) \leq p);$$

$$r \Vdash \tau(\dot{a}) = \dot{b}, \text{ and}$$

$$r \Vdash \tau(\dot{a}) = \dot{b'},$$

which is a contradiction since we assumed that $b \neq b'$.

Therefore, g[F(a)] is an antichain, and hence countable in M since \mathbb{P} has the ccc in M by assumption. Therefore, since g is injective, F(a) is countable in M.

Remark. We now know, by Lemma 14.16, that any extension of a ctm M defined with respect to a $FP(\aleph_2 \times \omega, 2)$ -generic set doesn't collapse cardinals.

We also note the general shape of the preceding proof: we went from some combinatorial property of a partial order \mathbb{P} (here, the ccc property of FP(X, Y)) to a property of \mathbb{P} -generic extensions of a ctm M. This is typical of forcing arguments, although in general the combinatorial properties may be much more complicated, and the proofs correspondingly more difficult.