Lecture 23: Independence of CH, part IV
April 15, 2009

Remark. In the previous lecture, we defined the generic extension M[G] of any
ctm M with respect to a set G which is P-generic over M. Today, we will begin
to verify that it has the required properties. In particular:

e M C MIG]. (We showed this in the previous lecture.)

e G € M[G].

e M[G] is transitive.

e o(M) = o(MI[G]).

e M[G] is a ctm.

e M[G] is the least extension of M with these properties.
Lemma 14.21. G € M|[G].

Proof. Consider the set
A={{p,p) |peP}

We have already seen that & € M whenever x € M, so A € M by pairing and
replacement (M is a ctm). Also, A is clearly a P-name. But val(A,G) = G, so
we conclude that G € M[G]. &

Lemma 14.22. M|G] is the least extension of M with the required properties.

Proof. Suppose there is some ctm N such that M C N and G e N. ME C N
since M C N, so val(1,G) € N for all 7 € M¥ (val is definable in M[G], and
absolute since it is defined by recursion). Therefore, M[G] C N. &

Remark. From now on we will use the abbreviation 7¢ in place of val(r, G).
Lemma 14.23. M|[G] is transitive.

Proof. Suppose x € M[G] and y € z. By definition of M[G], there is some
7 € MP for which « = 7. Expanding out the definition of 7¢, we have

x=17¢={0g|Ipe G {o,p)eT}.

Therefore y = oG for some o € VT, but since M is transitive, 0 € M as well
(since 7 is). Hence y € M[G]. &

Lemma 14.24. o(M) = o(M[G]).
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Proof. o(M) < o(M[G]) follows directly from the fact that M C M[G].

To show that o(M[G]) < o(M), we show that rank(7¢) < rank(7), by struc-
tural induction on 7. If 7 = (), then rank(7g) = rank(f) = 0.

In the inductive case,

rank(7g) = rank({og | 3p € G. (o, p) € 7 })
<rank({og | (o.p) € T})
<rank({o | (o,p) €T}) (IH)
< I‘ank({< p) | {o.p) €T}
nk(7).

Now we note that if « € M[G], then there is some 7 € M for which 7¢ = «, and
a = rank(a) < rank(7) = 8, and that rank(r) € M whenever 7 € M. (?7) &

Remark. Tt remains to show that M[G] is a ctm; but before we do that, we talk
about the method of forcing, and use it to prove the Approximation Lemma
(Lemma 14.15).

Definition 14.25. Let M be a ctm and P € M a poset with a maximal element.
Suppose ¢(z1,...,7,) is some formula and 71,...,7, € MF. Then p forces
o(T1, ..., Tn), written

plae (T, .., Th)s

iff for every G which is a P-generic extension over M with p € G,

MI[G] & o(T1Gs -+ Taa)-
Remark. Often M and P will be clear from the context and we omit the sub-
scripts on IF.
Remark. We now state two essential (and somewhat surprising) results about

forcing; their proofs will be put off until later.

Theorem 14.26 (Truth). M[G] = ©(T1q,---,Tng) if and only if there is some
p € G for which pl- o(T1,...,7,).

Theorem 14.27 (Definability). For every ¢(x1,...,x,), there is a formula
denoted
pIF oy, ..., 20)

such that for allty,..., 7, p Ik ©(T1,...,7) if and only if M = (p IH* (11, ..., 7).

Remark. In other words, the notion of forcing is definable within M itself. This
is rather surprising, since the definition of forcing quantifies over all generic
extensions, which are not elements of M!

Lemma 14.28 (Preservation of forcing). For all formulas ¢ and s,t € P, if
s <tandtl- @, then sk .
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Proof. Suppose s ¥ p—that is, there is some G P-generic over M with s € G
and M[G] ¥ . But since G is a filter, it is upward closed; hence s € G implies
t € G, which is a contradiction since ¢ IF ¢. B4

Remark. We now return to prove the Approximation Lemma (Lemma 14.15).

Proof of Lemma 14.15. Let 7 € MP such that 7¢ = f. By Theorem 14.26
(Truth), there is some p € G such that plk-7:2 — 9.
Now, for each a € X, define

F(a)={b|3g<p.qlk7(a)=0b}.

Then by definability of forcing in M (Theorem 14.27) and the fact that M is a
ctm, we have that F' € M.

Now suppose f(a) = b; we wish to show that b € F(a). Since f(a) = b, in
particular we have that M[G] = 7g(a) = b. Hence, by Truth, there is some
r € @ such that r IF 7(a) = b. Since G is a filter and p,r € G, there is some
g € G for which ¢ < p and ¢ < r. By Lemma 14.28, ¢ I+ 7(a) = b. But then
b € F(a) by definition.

Finally, we show that F'(a) is countable in M for every a € X. Since M
is a ctm, it satisfies AC, so there is a choice function ¢ : F'(a) — G such that
g(b) < p and g(b) IF 7(a) = b for each b € F(a); that is, for each b, g picks a
witness of the fact that b € F(a). (We note that for each b, the set of ¢ which
witness b € F(a) is in M by definability of forcing and the fact that M is a
ctm.)

We claim that for any two distinct b, b’ € F(a), g(b) L g(b'). (Note that this
also implies that g is injective.) To see this, suppose b # b" and g(b) T g(b).
Then since G is a filter, there exists some r for which r < g(b) and r < g(¥').
But then by preservation of forcing,

rlF7:4 — g (since r < g(b) < p),
rlF 7(a) = b, and
ri-r(a) =v,

which is a contradiction since we assumed that b # b'.

Therefore, g[F(a)] is an antichain, and hence countable in M since P has
the ccc in M by assumption. Therefore, since g is injective, F'(a) is countable
in M. B4

Remark. We now know, by Lemma 14.16, that any extension of a ctm M defined
with respect to a F'P(Ry X w, 2)-generic set doesn’t collapse cardinals.

We also note the general shape of the preceding proof: we went from some
combinatorial property of a partial order P (here, the ccc property of FP(X,Y))
to a property of P-generic extensions of a ctm M. This is typical of forcing
arguments, although in general the combinatorial proerties may be much more
complicated, and the proofs correspondingly more difficult.
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