
Lecture 23: Independence of CH, part IV
April 15, 2009

Remark. In the previous lecture, we defined the generic extension M [G] of any
ctm M with respect to a set G which is P-generic over M . Today, we will begin
to verify that it has the required properties. In particular:

• M ⊆ M [G]. (We showed this in the previous lecture.)

• G ∈ M [G].

• M [G] is transitive.

• o(M) = o(M [G]).

• M [G] is a ctm.

• M [G] is the least extension of M with these properties.

Lemma 14.21. G ∈ M [G].

Proof. Consider the set
∆ = { 〈ṗ, p〉 | p ∈ P }.

We have already seen that ẋ ∈ M whenever x ∈ M , so ∆ ∈ M by pairing and
replacement (M is a ctm). Also, ∆ is clearly a P-name. But val(∆, G) = G, so
we conclude that G ∈ M [G]. SDG

Lemma 14.22. M [G] is the least extension of M with the required properties.

Proof. Suppose there is some ctm N such that M ⊆ N and G ∈ N . MP ⊆ N
since M ⊆ N , so val(τ,G) ∈ N for all τ ∈ MP (val is definable in M [G], and
absolute since it is defined by recursion). Therefore, M [G] ⊆ N . SDG

Remark. From now on we will use the abbreviation τG in place of val(τ,G).

Lemma 14.23. M [G] is transitive.

Proof. Suppose x ∈ M [G] and y ∈ x. By definition of M [G], there is some
τ ∈ MP for which x = τG. Expanding out the definition of τG, we have

x = τG = {σG | ∃p ∈ G. 〈σ, p〉 ∈ τ }.

Therefore y = σG for some σ ∈ V P, but since M is transitive, σ ∈ M as well
(since τ is). Hence y ∈ M [G]. SDG

Lemma 14.24. o(M) = o(M [G]).
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Proof. o(M) ≤ o(M [G]) follows directly from the fact that M ⊆ M [G].
To show that o(M [G]) ≤ o(M), we show that rank(τG) ≤ rank(τ), by struc-

tural induction on τ . If τ = ∅, then rank(τG) = rank(∅) = 0.
In the inductive case,

rank(τG) = rank({σG | ∃p ∈ G. 〈σ, p〉 ∈ τ })
≤ rank({σG | 〈σ, p〉 ∈ τ })
≤ rank({σ | 〈σ, p〉 ∈ τ }) (IH)
≤ rank({ 〈σ, p〉 | 〈σ, p〉 ∈ τ })
= rank(τ).

Now we note that if α ∈ M [G], then there is some τ ∈ M for which τG = α, and
α = rank(α) ≤ rank(τ) = β, and that rank(τ) ∈ M whenever τ ∈ M . (??) SDG

Remark. It remains to show that M [G] is a ctm; but before we do that, we talk
about the method of forcing, and use it to prove the Approximation Lemma
(Lemma 14.15).

Definition 14.25. Let M be a ctm and P ∈ M a poset with a maximal element.
Suppose ϕ(x1, . . . , xn) is some formula and τ1, . . . , τn ∈ MP. Then p forces
ϕ(τ1, . . . , τn), written

p °M,P ϕ(τ1, . . . , τn),

iff for every G which is a P-generic extension over M with p ∈ G,

M [G] |= ϕ(τ1G, . . . , τnG).

Remark. Often M and P will be clear from the context and we omit the sub-
scripts on °.

Remark. We now state two essential (and somewhat surprising) results about
forcing; their proofs will be put off until later.

Theorem 14.26 (Truth). M [G] |= ϕ(τ1G, . . . , τnG) if and only if there is some
p ∈ G for which p ° ϕ(τ1, . . . , τn).

Theorem 14.27 (Definability). For every ϕ(x1, . . . , xn), there is a formula
denoted

p °∗ ϕ(x1, . . . , xn)

such that for all τ1, . . . , τn, p ° ϕ(τ1, . . . , τn) if and only if M |= (p °∗ ϕ(τ1, . . . , τn)).

Remark. In other words, the notion of forcing is definable within M itself. This
is rather surprising, since the definition of forcing quantifies over all generic
extensions, which are not elements of M !

Lemma 14.28 (Preservation of forcing). For all formulas ϕ and s, t ∈ P, if
s ≤ t and t ° ϕ, then s ° ϕ.
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Proof. Suppose s 1 ϕ—that is, there is some G P-generic over M with s ∈ G
and M [G] 2 ϕ. But since G is a filter, it is upward closed; hence s ∈ G implies
t ∈ G, which is a contradiction since t ° ϕ. SDG

Remark. We now return to prove the Approximation Lemma (Lemma 14.15).

Proof of Lemma 14.15. Let τ ∈ MP such that τG = f . By Theorem 14.26
(Truth), there is some p ∈ G such that p ° τ : ẋ → ẏ.

Now, for each a ∈ X, define

F (a) = { b | ∃q ≤ p. q ° τ(ȧ) = ḃ }.

Then by definability of forcing in M (Theorem 14.27) and the fact that M is a
ctm, we have that F ∈ M .

Now suppose f(a) = b; we wish to show that b ∈ F (a). Since f(a) = b, in
particular we have that M [G] |= τG(a) = b. Hence, by Truth, there is some
r ∈ G such that r ° τ(ȧ) = ḃ. Since G is a filter and p, r ∈ G, there is some
q ∈ G for which q ≤ p and q ≤ r. By Lemma 14.28, q ° τ(ȧ) = ḃ. But then
b ∈ F (a) by definition.

Finally, we show that F (a) is countable in M for every a ∈ X. Since M
is a ctm, it satisfies AC, so there is a choice function g : F (a) → G such that
g(b) ≤ p and g(b) ° τ(ȧ) = ḃ for each b ∈ F (a); that is, for each b, g picks a
witness of the fact that b ∈ F (a). (We note that for each b, the set of q which
witness b ∈ F (a) is in M by definability of forcing and the fact that M is a
ctm.)

We claim that for any two distinct b, b′ ∈ F (a), g(b) ⊥ g(b′). (Note that this
also implies that g is injective.) To see this, suppose b 6= b′ and g(b) > g(b′).
Then since G is a filter, there exists some r for which r ≤ g(b) and r ≤ g(b′).
But then by preservation of forcing,

r ° τ : ẋ → ẏ (since r ≤ g(b) ≤ p),

r ° τ(ȧ) = ḃ, and

r ° τ(ȧ) = ḃ′,

which is a contradiction since we assumed that b 6= b′.
Therefore, g[F (a)] is an antichain, and hence countable in M since P has

the ccc in M by assumption. Therefore, since g is injective, F (a) is countable
in M . SDG

Remark. We now know, by Lemma 14.16, that any extension of a ctm M defined
with respect to a FP (ℵ2 × ω, 2)-generic set doesn’t collapse cardinals.

We also note the general shape of the preceding proof: we went from some
combinatorial property of a partial order P (here, the ccc property of FP (X, Y ))
to a property of P-generic extensions of a ctm M . This is typical of forcing
arguments, although in general the combinatorial proerties may be much more
complicated, and the proofs correspondingly more difficult.
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