Lecture 24: Independence of CH, part V
April 20, 2009

Lemma 14.29. M|G] is a ctm of ZFC.

Proof. We show that M[G] satisfies each axiom of ZFC.
e Extensionality. Follows easily from transitivity of M[G].
e Regularity. Trivial.

e Pairing. Let z,y € M[G]; then there exist 7,0 € M¥ with 7¢ = x and
oa = y. Now consider the set

6= {<T, ]-IF’> ) <Ja 1IP’>}

It is easy to see that dq = {7g,0¢} = {z,y}. But note that § € MF: it is
a P-name by construction, and is in M since M is a ctm.

e Union. Suppose a € M[G]. We wish to show that there is some b € M[G]
which contains | J a as a subset (we can then appeal to Separation in M[G],
which we will show later).

Since a € M[G], there is some 7 € M¥ with 7¢ = a. Let 7 = |Jdom(7);
this is a set which contains the P-names of all elements of 7 (and possibly
some extra ones whose corresponding conditions are not in G). © € M
since M is a ctm; m € V¥ by construction (dom(7) is a set of P-names, so
Udom(7) is a subset of VF x P). Hence 7 € M¥, so ng € M[G].

We claim that | Ja C mg. To see this, let ¢ € a; then ¢ = o for some
o € dom(7). Therefore o C 7, so o¢ C 7g.

e Separation. Let 0 € M* and let ¢ be a formula (it may have multiple
parameters, but we omit them in the following proof), and define

c={acoq|M[G| | pld}.
We wish to show that ¢ € M[G], which we will do by finding a suitable

P-name for c.

We claim that a suitable P-name is
p={(mp) €dom(c) xP|plkmeaner)}

We first note that p € M by separation in M and definability of I (The-
orem 14.27); p is clearly a P-name by construction. Now we must show
that pg = c.

— (pe C ¢). Suppose z € pg, so there is some (m,p) € p such that
x =7g and plk m# € 0 Ap(r) and p € G. Then by definition
of forcing, 7 € o¢ and M[G] = ¢[rg]. Hence © = ng € ¢ by
definition of c.
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— (¢ € pg). Suppose a € ¢, that is, a € og and M[G] = ¢la]. Then
there is some 7 € MF such that 7¢ = a. So by Truth (Theo-
rem 14.26) we may pick p € G such that p IF 7 € 0 A p(7w). Then
(m,p) € p,s0 a=17¢g € pa-

e Replacement. At this point, we introduce the axiom schema of Collection:
Ve.JyVz € z.(Fw.p(z,w) = Jw € y.p(z,w)).

Intuitively, this states that we can collect elements in the image of any set
2 under any partial relation ¢ into a set y (which may also contain other
stuff). This implies the axiom schema of Replacement: we may take ¢ to
be a functional relation, and then given a set y witnessing Collection, we
may use Separation to yield a set which is exactly the image ¢[z].

It turns out that Collection is also a theorem of ZF, via the reflection
principle.

Now suppose we have some x = og; we wish to exhibit a p for which
M[G] EVz € 0g.(Fw.p(z,w) = Jw € pg.p(z,w)). (2)
Let S € M such that

M =V € dom(o).Vp € P.(3u. M () A p - (7, )
= (3u e S).plk p(m,n).

It is not a priori clear that such an S exists. If MT were a set, we could
just take S = MPT, but MF may be a proper class. However, such an S
does exist, which we can show as follows (note that in the following, all
our reasoning is taking place inside M). By Reflection in M, there is a
closed unbounded class of ordinals o which simultaneously reflect the two
formulae

3. MF (1) Ap I o(m, )

and
MF () Ap - (),
that is,
v € dom(0).Vp € P.(Ipu.M" () Ap I o(m, 1)
& [FuM" () Ap Ik o(m, w)] "), (3)
and

Vr € dom(o).Vp € IP’.VM.(MP(M) Aplk o(m,p)
& [M" () Ap - p(m, m)]"). (4)

So, we may pick such an « large enough so that dom(o) € V,, and P € V.
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We then let S = MF N V,, and claim that S has the required property.
Given some 7 € dom(o) and p € PP, suppose there exists some p € MF
for which p IF ¢(m, ). Then by equation (3) there is some p € V' which
satisfies [M¥ (1) Ap IF p(m, 1)]V>; but then by equation (4) u also satisfies
this condition in the universe, so u € S and p b o(m, p), exactly the
required property of S.

Now let p = S x {1p}, so pg = {pg | p € S} (since G is a filter). Now
we must show that p satisfies equation (2).

To this end, let z € og and eMIC](z,w) for some w € M[G]. We must
find some w’ € pg for which MG (2, w").

Since z € og, z = 7w for some 7 € dom(o). We know that M[G] =
Jw.p(rg, w), so there must be some y for which M[G] = ¢(r¢q, 1ie). Then
by Truth there is some p € G such that p I (7, ). Then by the property
of S, there is some p/ € S such that p IF ¢(7, 1'), and pg € pa. e

Remark. We are not quite done; in the next lecture we will cover Powerset and
Choice. But now, a small digression about the axiom schema of Collection.

Definition 14.30. Kripke-Platek set theory is the axiomatic system with Ex-
tensionality, Regularity, Pairing, Union, and all A instances of Separation and
Collection.

Remark. Tt is easy to see that V,, = K P, since it models ZF — Infinity. KP +
Infinity is a nice system, too.

Definition 14.31. An ordinal « is admissible iff L, = KP.

Remark. Admissible ordinals “are those which support a nice notion of com-
putability.”

Definition 14.32. R C w X w is recursive iff cg, the characteristic function of
R, is Turing-computable. An ordinal « is recursive iff it is the order type of
some recursive R C w X w.

Definition 14.33. w?K , the Church-Kleene ordinal, is the least non-recursive
ordinal.
(w§E)f is the least non-(recursive)/ ordinal, where f € w — 2 and (recursive)/

means Turing-computable given an f-oracle.

Theorem 14.34. If « is a countable ordinal greater than w, then « is admissible
iff @ = (W) for some f € w — 2.

Remark. The proof is omitted.
We note that wch is, in fact, the set of all recursive ordinals, so in particular
it must be countable (since there are countably many Turing machines).
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