
Lecture 24: Independence of CH, part V
April 20, 2009

Lemma 14.29. M [G] is a ctm of ZFC.

Proof. We show that M [G] satisfies each axiom of ZFC.

• Extensionality. Follows easily from transitivity of M [G].

• Regularity. Trivial.

• Pairing. Let x, y ∈ M [G]; then there exist τ, σ ∈ MP with τG = x and
σG = y. Now consider the set

δ = {〈τ, 1P〉 , 〈σ, 1P〉}.
It is easy to see that δG = {τG, σG} = {x, y}. But note that δ ∈ MP: it is
a P-name by construction, and is in M since M is a ctm.

• Union. Suppose a ∈ M [G]. We wish to show that there is some b ∈ M [G]
which contains

⋃
a as a subset (we can then appeal to Separation in M [G],

which we will show later).

Since a ∈ M [G], there is some τ ∈ MP with τG = a. Let π =
⋃

dom(τ);
this is a set which contains the P-names of all elements of τG (and possibly
some extra ones whose corresponding conditions are not in G). π ∈ M
since M is a ctm; π ∈ V P by construction (dom(τ) is a set of P-names, so⋃

dom(τ) is a subset of V P × P). Hence π ∈ MP, so πG ∈ M [G].

We claim that
⋃

a ⊆ πG. To see this, let c ∈ a; then c = σG for some
σ ∈ dom(τ). Therefore σ ⊆ π, so σG ⊆ πG.

• Separation. Let σ ∈ MP and let ϕ be a formula (it may have multiple
parameters, but we omit them in the following proof), and define

c = { a ∈ σG | M [G] |= ϕ[a] }.
We wish to show that c ∈ M [G], which we will do by finding a suitable
P-name for c.

We claim that a suitable P-name is

ρ = { 〈π, p〉 ∈ dom(σ)× P | p ° π ∈ σ ∧ ϕ(π) }.
We first note that ρ ∈ M by separation in M and definability of ° (The-
orem 14.27); ρ is clearly a P-name by construction. Now we must show
that ρG = c.

– (ρG ⊆ c). Suppose x ∈ ρG, so there is some 〈π, p〉 ∈ ρ such that
x = πG and p ° π ∈ σ ∧ ϕ(π) and p ∈ G. Then by definition
of forcing, πG ∈ σG and M [G] |= ϕ[πG]. Hence x = πG ∈ c by
definition of c.
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– (c ⊆ ρG). Suppose a ∈ c, that is, a ∈ σG and M [G] |= ϕ[a]. Then
there is some π ∈ MP such that πG = a. So by Truth (Theo-
rem 14.26) we may pick p ∈ G such that p ° π ∈ σ ∧ ϕ(π). Then
〈π, p〉 ∈ ρ, so a = πG ∈ ρG.

• Replacement. At this point, we introduce the axiom schema of Collection:

∀x.∃y.∀z ∈ x.(∃w.ϕ(z, w) ⇒ ∃w ∈ y.ϕ(z, w)).

Intuitively, this states that we can collect elements in the image of any set
x under any partial relation ϕ into a set y (which may also contain other
stuff). This implies the axiom schema of Replacement: we may take ϕ to
be a functional relation, and then given a set y witnessing Collection, we
may use Separation to yield a set which is exactly the image ϕ[x].

It turns out that Collection is also a theorem of ZF, via the reflection
principle.

Now suppose we have some x = σG; we wish to exhibit a ρ for which

M [G] |= ∀z ∈ σG.(∃w.ϕ(z, w) ⇒ ∃w ∈ ρG.ϕ(z, w)). (2)

Let S ∈ M such that

M |= ∀π ∈ dom(σ).∀p ∈ P.(∃µ.MP(µ) ∧ p ° ϕ(π, µ)
⇒ (∃µ ∈ S).p ° ϕ(π, µ)).

It is not a priori clear that such an S exists. If MP were a set, we could
just take S = MP, but MP may be a proper class. However, such an S
does exist, which we can show as follows (note that in the following, all
our reasoning is taking place inside M). By Reflection in M , there is a
closed unbounded class of ordinals α which simultaneously reflect the two
formulae

∃µ.MP(µ) ∧ p ° ϕ(π, µ)

and
MP(µ) ∧ p ° ϕ(π, µ),

that is,

∀π ∈ dom(σ).∀p ∈ P.
(∃µ.MP(µ) ∧ p ° ϕ(π, µ)

⇔ [∃µ.MP(µ) ∧ p ° ϕ(π, µ)]Vα
)
, (3)

and

∀π ∈ dom(σ).∀p ∈ P.∀µ.
(
MP(µ) ∧ p ° ϕ(π, µ)

⇔ [MP(µ) ∧ p ° ϕ(π, µ)]Vα
)
. (4)

So, we may pick such an α large enough so that dom(σ) ∈ Vα and P ∈ Vα.
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We then let S = MP ∩ Vα, and claim that S has the required property.
Given some π ∈ dom(σ) and p ∈ P, suppose there exists some µ ∈ MP

for which p ° ϕ(π, µ). Then by equation (3) there is some µ ∈ V α which
satisfies [MP(µ)∧ p ° ϕ(π, µ)]Vα ; but then by equation (4) µ also satisfies
this condition in the universe, so µ ∈ S and p ° ϕ(π, µ), exactly the
required property of S.

Now let ρ = S × {1P}, so ρG = {µG | µ ∈ S } (since G is a filter). Now
we must show that ρ satisfies equation (2).

To this end, let z ∈ σG and ϕM [G](z, w) for some w ∈ M [G]. We must
find some w′ ∈ ρG for which ϕM [G](z, w′).

Since z ∈ σG, z = πG for some π ∈ dom(σ). We know that M [G] |=
∃w.ϕ(πG, w), so there must be some µ for which M [G] |= ϕ(πG, µG). Then
by Truth there is some p ∈ G such that p ° ϕ(π, µ). Then by the property
of S, there is some µ′ ∈ S such that p ° ϕ(π, µ′), and µ′G ∈ ρG. SDG

Remark. We are not quite done; in the next lecture we will cover Powerset and
Choice. But now, a small digression about the axiom schema of Collection.

Definition 14.30. Kripke-Platek set theory is the axiomatic system with Ex-
tensionality, Regularity, Pairing, Union, and all ∆0 instances of Separation and
Collection.

Remark. It is easy to see that Vω |= KP , since it models ZF − Infinity. KP +
Infinity is a nice system, too.

Definition 14.31. An ordinal α is admissible iff Lα |= KP .

Remark. Admissible ordinals “are those which support a nice notion of com-
putability.”

Definition 14.32. R ⊆ ω × ω is recursive iff cR, the characteristic function of
R, is Turing-computable. An ordinal α is recursive iff it is the order type of
some recursive R ⊆ ω × ω.

Definition 14.33. ωCK
1 , the Church-Kleene ordinal, is the least non-recursive

ordinal.
(ωCK

1 )f is the least non-(recursive)f ordinal, where f ∈ ω → 2 and (recursive)f

means Turing-computable given an f -oracle.

Theorem 14.34. If α is a countable ordinal greater than ω, then α is admissible
iff α = (ωCK

1 )f for some f ∈ ω → 2.

Remark. The proof is omitted.
We note that ωCK

1 is, in fact, the set of all recursive ordinals, so in particular
it must be countable (since there are countably many Turing machines).
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