Lecture 25: Independence of CH, part VI
 April 22, 2009

Remark. We now return to finish the proof that $M[G]$ is a ctm.
Proof. - Powerset. Let $\sigma_{G} \in M[G]$. We wish to construct some $\rho \in M^{\mathbb{P}}$ such that

$$
\forall x . x \subseteq \sigma_{G} \Rightarrow x \in \rho_{G} .
$$

This suffices, because once we have obtained a covering of the power set in this manner, we can use Separation to cut out the exact power set.
To this end, let

$$
S=\left\{\tau \in M^{\mathbb{P}} \mid \operatorname{dom}(\tau) \subseteq \operatorname{dom}(\sigma)\right\}
$$

We note that $S \in M$, since it is equal to $[\mathcal{P}(\operatorname{dom}(\sigma) \times \mathbb{P})]^{M}$, and $\mathcal{P}(\operatorname{dom}(\sigma) \times$ \mathbb{P}) exists in M since it is a ctm.
Now let $\rho=S \times\left\{1_{\mathbb{P}}\right\}$. We claim that this is the desired ρ. To see this, suppose $\mu \in M^{\mathbb{P}}$ and $\mu_{G} \subseteq \sigma_{G}$; we must show that $\mu_{G} \in \rho_{G}$. Let

$$
\tau=\{\langle\pi, p\rangle \mid \pi \in \operatorname{dom}(\sigma) \wedge p \Vdash \pi \in \mu\} .
$$

We note that $\tau \in M$ by definability of forcing; also, τ has the form of a \mathbb{P}-name, so $\tau \in M^{\mathbb{P}}$. Then by definition of S, it is easy to see that $\tau \in S$. Therefore, $\tau_{G} \in \rho_{G}$.
To complete the proof, we claim that $\tau_{G}=\mu_{G}$.
$-\left(\mu_{G} \subseteq \tau_{G}\right)$. Let $y \in \mu_{G}$. Since $\mu_{G} \subseteq \sigma_{G}$, there must be some $\pi \in \operatorname{dom}(\sigma)$ for which $y=\pi_{G} \in \sigma_{G}$. Therefore, by Truth, there is some $p \in G$ for which $p \Vdash \pi \in \mu$. So $\langle\pi, p\rangle \in \tau$ by definition, and hence $y=\pi_{G} \in \tau_{G}$ (since $p \in G$).

- $\left(\tau_{G} \subseteq \mu_{G}\right)$. Suppose $y \in \tau_{G}$. Then $y=\pi_{G}$ for some π with $\langle\pi, p\rangle \in \tau$, $p \in G$, and $p \Vdash \pi \in \mu$. So, by definition of forcing, $y=\pi_{G} \in \mu_{G}$.
- Choice. We first give the following alternate formulation of the wellordering principle:

$$
\forall x . \exists f . \exists \alpha \in O r d . \operatorname{dom}(f)=\alpha \wedge x \subseteq \operatorname{rng} f
$$

Some thought should show that this is equivalent to the familiar version of the well-ordering principle; given a set x, if we have a function f postulated by the above axiom, then we can use f to construct a well-ordering of x : put the elements of x in order according to the least β such that $f(\beta)$ yields them.
Fix $x=\sigma_{G}$. Since M satisfies Choice, there is some well-ordering π of the elements of $\operatorname{dom}(\sigma)$:

$$
\operatorname{dom}(\sigma)=\left\{\pi_{\gamma} \mid \gamma<\alpha\right\}
$$

where $\operatorname{Ord}(\alpha)$ and the function $\pi_{(-)} \in M . \pi$ is a well-ordering of the domain of σ, which consists of names of elements of x (possibly plus some extra names). It is not hard to see that we can use a well-ordering of the names of elements of x to construct a well-ordering of x, as follows.
Let $\tau=\left\{\dot{\langle } \dot{\gamma}, \pi_{\gamma} \dot{\rangle} \mid \gamma<\alpha\right\} \times\left\{1_{\mathbb{P}}\right\}$, where $\dot{\langle } x, y \dot{\rangle}$ denotes the name for which $\dot{\langle x}, y \dot{\rangle}_{G}=\left\langle x_{G}, y_{G}\right\rangle . \tau \in M^{\mathbb{P}}$ since M is a ctm. Moreover,

$$
\tau_{G}=\left\{\left\langle\gamma,\left(\pi_{\gamma}\right)_{G}\right\rangle \mid \gamma<\alpha\right\} .
$$

So τ_{G} is a function with domain α and $\sigma_{G} \subseteq \operatorname{rng} \tau_{G}$, as desired.
Remark. Hence, $M[G]$ is a ctm; putting this result together with previous results, we have now shown (modulo the proofs of Truth and Definability) that there is a G for which

$$
M[G] \models Z F C+\neg C H,
$$

and therefore that $C H$ is formally independent of ZFC!

15 Ramsey cardinals

Remark. And now, for something completely different! We will now attempt to show that

$$
Z F C+Q \vdash V \neq L,
$$

where Q is a large cardinal axiom. But first, Ramsey's Theorem!
Definition 15.1. For any set κ, we introduce the notation

$$
[\kappa]^{n}=\{x \subseteq \kappa \mid \operatorname{card}(x)=n\}
$$

that is, the collection of n-element subsets of κ. While this definition makes sense for any cardinal n, we will only use it for $n \in \omega$.

Definition 15.2. For any cardinals κ and λ, we define the relation

$$
\kappa \rightarrow(\lambda)_{\mu}^{n}
$$

to hold iff for every function $f:[\kappa]^{n} \rightarrow \mu$, there exists a set x such that

- $x \subseteq \kappa$,
- $\operatorname{card}(x)=\lambda$, and
- $f \upharpoonright[x]^{n}$ is constant.

Remark. $f:[\kappa]^{n} \rightarrow \mu$ can be seen as a labeling of the n-element subsets of κ, using labels from μ. For example, if $n=2$, such an f can be thought of as an edge coloring of the complete graph on κ nodes, using μ colors. If $\kappa \rightarrow(\lambda)_{\mu}^{2}$ holds, it means that we can find a subset of nodes of size λ which induces a monochromatically colored complete subgraph.

Theorem 15.3 (Ramsey's Theorem). $\omega \rightarrow(\omega)_{m}^{n}$ for all $n, m \in \omega$.
Remark. This seems somewhat surprising! But it is true. In the finite case, it is famously true that for any $l \in \omega$, there exists some $k \in \omega$ such that $k \rightarrow(l)_{2}^{2}$, but the growth rate of the smallest such k with respect to l is astronomical (and unknown). Note famous quote by Erdős regarding this function and hostile aliens.

Proof. We will only prove the case for $\mu=n=2$; it should be straightforward to see how to generalize the proof.

Let $f:[\omega]^{2} \rightarrow\{0,1\}$. We wish to construct a set $X \subseteq \omega$ of size ω for which $f \upharpoonright[X]^{2}$ is constant. We mutually construct three sequences a_{i}, b_{i}, and X_{i} as follows:

$$
\begin{aligned}
X_{0} & =\omega \\
a_{0} & =0 \\
X_{i+1} & =\left\{n \in X_{i} \mid f\left(\left\{a_{i}, n\right\}\right)=b_{i}\right\} \quad b_{i} \in\{0,1\} \text { such that } X_{i+1} \text { is infinite } \\
a_{i+1} & =\text { least } n \in X_{i+1} \text { such that } n>a_{i}
\end{aligned}
$$

Note that we can always pick an appropriate b_{i} by an infinite version of the pigeonhole principle.

Again by the pigeonhole principle, either infinitely many $b_{i}=0$, or infinitely many $b_{i}=1$. So we may choose $X=\left\{a_{i} \mid b_{i}=b\right\}$, for whichever value of b makes X infinite (note that all the a_{i} are distinct since we chose them to form an increasing sequence).

We claim that $f \upharpoonright[X]^{2}$ is constantly b. Let $a_{i}, a_{j} \in X$, and suppose, without loss of generality, that $j<k$. We know that $a_{k} \in X_{k}$; but since the X_{i} form a decreasing chain, $a_{k} \in X_{j+1}$ as well. But then by definition, $f\left(\left\{a_{j}, a_{k}\right\}\right)=b_{j}=$ b.

