Remark. We now return to finish the proof that M[G] is a ctm.

Proof. • Powerset. Let $\sigma_G \in M[G]$. We wish to construct some $\rho \in M^{\mathbb{P}}$ such that

$$\forall x.x \subseteq \sigma_G \Rightarrow x \in \rho_G.$$

This suffices, because once we have obtained a covering of the power set in this manner, we can use Separation to cut out the exact power set. To this end, let

$$S = \{ \tau \in M^{\mathbb{P}} \mid \operatorname{dom}(\tau) \subseteq \operatorname{dom}(\sigma) \}.$$

We note that $S \in M$, since it is equal to $[\mathcal{P}(\operatorname{dom}(\sigma) \times \mathbb{P})]^M$, and $\mathcal{P}(\operatorname{dom}(\sigma) \times \mathbb{P})$ exists in M since it is a ctm.

Now let $\rho = S \times \{1_{\mathbb{P}}\}$. We claim that this is the desired ρ . To see this, suppose $\mu \in M^{\mathbb{P}}$ and $\mu_G \subseteq \sigma_G$; we must show that $\mu_G \in \rho_G$. Let

 $\tau = \{ \langle \pi, p \rangle \mid \pi \in \operatorname{dom}(\sigma) \land p \Vdash \pi \in \mu \}.$

We note that $\tau \in M$ by definability of forcing; also, τ has the form of a \mathbb{P} -name, so $\tau \in M^{\mathbb{P}}$. Then by definition of S, it is easy to see that $\tau \in S$. Therefore, $\tau_G \in \rho_G$.

To complete the proof, we claim that $\tau_G = \mu_G$.

- $(\mu_G \subseteq \tau_G)$. Let $y \in \mu_G$. Since $\mu_G \subseteq \sigma_G$, there must be some $\pi \in \operatorname{dom}(\sigma)$ for which $y = \pi_G \in \sigma_G$. Therefore, by Truth, there is some $p \in G$ for which $p \Vdash \pi \in \mu$. So $\langle \pi, p \rangle \in \tau$ by definition, and hence $y = \pi_G \in \tau_G$ (since $p \in G$).
- $(\tau_G \subseteq \mu_G)$. Suppose $y \in \tau_G$. Then $y = \pi_G$ for some π with $\langle \pi, p \rangle \in \tau$, $p \in G$, and $p \Vdash \pi \in \mu$. So, by definition of forcing, $y = \pi_G \in \mu_G$.
- Choice. We first give the following alternate formulation of the wellordering principle:

$$\forall x. \exists f. \exists \alpha \in Ord. \operatorname{dom}(f) = \alpha \land x \subseteq \operatorname{rng} f.$$

Some thought should show that this is equivalent to the familiar version of the well-ordering principle; given a set x, if we have a function f postulated by the above axiom, then we can use f to construct a well-ordering of x: put the elements of x in order according to the least β such that $f(\beta)$ yields them.

Fix $x = \sigma_G$. Since *M* satisfies Choice, there is some well-ordering π of the elements of dom(σ):

$$\operatorname{dom}(\sigma) = \{ \pi_{\gamma} \mid \gamma < \alpha \}$$

where $Ord(\alpha)$ and the function $\pi_{(-)} \in M$. π is a well-ordering of the domain of σ , which consists of names of elements of x (possibly plus some extra names). It is not hard to see that we can use a well-ordering of the names of elements of x to construct a well-ordering of x, as follows.

Let $\tau = \{ \dot{\langle \gamma, \pi_{\gamma} \rangle} \mid \gamma < \alpha \} \times \{1_{\mathbb{P}}\}$, where $\dot{\langle x, y \rangle}$ denotes the name for which $\dot{\langle x, y \rangle}_G = \langle x_G, y_G \rangle$. $\tau \in M^{\mathbb{P}}$ since M is a ctm. Moreover,

$$\tau_G = \{ \langle \gamma, (\pi_\gamma)_G \rangle \mid \gamma < \alpha \}.$$

So τ_G is a function with domain α and $\sigma_G \subseteq \operatorname{rng} \tau_G$, as desired.

Remark. Hence, M[G] is a ctm; putting this result together with previous results, we have now shown (modulo the proofs of Truth and Definability) that there is a G for which

$$M[G] \models ZFC + \neg CH,$$

and therefore that CH is formally independent of ZFC!

15 Ramsey cardinals

Remark. And now, for something completely different! We will now attempt to show that

$$ZFC + Q \vdash V \neq L$$
,

where Q is a large cardinal axiom. But first, Ramsey's Theorem!

Definition 15.1. For any set κ , we introduce the notation

$$[\kappa]^n = \{ x \subseteq \kappa \mid \operatorname{card}(x) = n \},\$$

that is, the collection of *n*-element subsets of κ . While this definition makes sense for any cardinal *n*, we will only use it for $n \in \omega$.

Definition 15.2. For any cardinals κ and λ , we define the relation

$$\kappa \to (\lambda)^n_\mu$$

to hold iff for every function $f: [\kappa]^n \to \mu$, there exists a set x such that

- $x \subseteq \kappa$,
- $\operatorname{card}(x) = \lambda$, and
- $f \upharpoonright [x]^n$ is constant.

Remark. $f : [\kappa]^n \to \mu$ can be seen as a labeling of the *n*-element subsets of κ , using labels from μ . For example, if n = 2, such an f can be thought of as an edge coloring of the complete graph on κ nodes, using μ colors. If $\kappa \to (\lambda)^2_{\mu}$ holds, it means that we can find a subset of nodes of size λ which induces a monochromatically colored complete subgraph.

Theorem 15.3 (Ramsey's Theorem). $\omega \to (\omega)_m^n$ for all $n, m \in \omega$.

Remark. This seems somewhat surprising! But it is true. In the finite case, it is famously true that for any $l \in \omega$, there exists some $k \in \omega$ such that $k \to (l)_2^2$, but the growth rate of the smallest such k with respect to l is astronomical (and unknown). Note famous quote by Erdős regarding this function and hostile aliens.

Proof. We will only prove the case for $\mu = n = 2$; it should be straightforward to see how to generalize the proof.

Let $f : [\omega]^2 \to \{0, 1\}$. We wish to construct a set $X \subseteq \omega$ of size ω for which $f \upharpoonright [X]^2$ is constant. We mutually construct three sequences a_i, b_i , and X_i as follows:

$$X_0 = \omega$$

$$a_0 = 0$$

$$X_{i+1} = \{ n \in X_i \mid f(\{a_i, n\}) = b_i \}$$

$$b_i \in \{0, 1\} \text{ such that } X_{i+1} \text{ is infinite}$$

$$a_{i+1} = \text{least } n \in X_{i+1} \text{ such that } n > a_i$$

Note that we can always pick an appropriate b_i by an infinite version of the pigeonhole principle.

Again by the pigeonhole principle, either infinitely many $b_i = 0$, or infinitely many $b_i = 1$. So we may choose $X = \{a_i \mid b_i = b\}$, for whichever value of b makes X infinite (note that all the a_i are distinct since we chose them to form an increasing sequence).

We claim that $f \upharpoonright [X]^2$ is constantly b. Let $a_i, a_j \in X$, and suppose, without loss of generality, that j < k. We know that $a_k \in X_k$; but since the X_i form a decreasing chain, $a_k \in X_{j+1}$ as well. But then by definition, $f(\{a_j, a_k\}) = b_j = b$.