
Lecture 25: Independence of CH, part VI
April 22, 2009

Remark. We now return to finish the proof that M [G] is a ctm.

Proof. • Powerset. Let σG ∈ M [G]. We wish to construct some ρ ∈ MP

such that
∀x.x ⊆ σG ⇒ x ∈ ρG.

This suffices, because once we have obtained a covering of the power set
in this manner, we can use Separation to cut out the exact power set.

To this end, let

S = { τ ∈ MP | dom(τ) ⊆ dom(σ) }.
We note that S ∈ M , since it is equal to [P(dom(σ)×P)]M , and P(dom(σ)×
P) exists in M since it is a ctm.

Now let ρ = S × {1P}. We claim that this is the desired ρ. To see this,
suppose µ ∈ MP and µG ⊆ σG; we must show that µG ∈ ρG. Let

τ = { 〈π, p〉 | π ∈ dom(σ) ∧ p ° π ∈ µ }.
We note that τ ∈ M by definability of forcing; also, τ has the form of a
P-name, so τ ∈ MP. Then by definition of S, it is easy to see that τ ∈ S.
Therefore, τG ∈ ρG.

To complete the proof, we claim that τG = µG.

– (µG ⊆ τG). Let y ∈ µG. Since µG ⊆ σG, there must be some
π ∈ dom(σ) for which y = πG ∈ σG. Therefore, by Truth, there is
some p ∈ G for which p ° π ∈ µ. So 〈π, p〉 ∈ τ by definition, and
hence y = πG ∈ τG (since p ∈ G).

– (τG ⊆ µG). Suppose y ∈ τG. Then y = πG for some π with 〈π, p〉 ∈ τ ,
p ∈ G, and p ° π ∈ µ. So, by definition of forcing, y = πG ∈ µG.

• Choice. We first give the following alternate formulation of the well-
ordering principle:

∀x.∃f.∃α ∈ Ord. dom(f) = α ∧ x ⊆ rng f.

Some thought should show that this is equivalent to the familiar version of
the well-ordering principle; given a set x, if we have a function f postulated
by the above axiom, then we can use f to construct a well-ordering of x:
put the elements of x in order according to the least β such that f(β)
yields them.

Fix x = σG. Since M satisfies Choice, there is some well-ordering π of the
elements of dom(σ):

dom(σ) = {πγ | γ < α }
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where Ord(α) and the function π(−) ∈ M . π is a well-ordering of the
domain of σ, which consists of names of elements of x (possibly plus some
extra names). It is not hard to see that we can use a well-ordering of the
names of elements of x to construct a well-ordering of x, as follows.

Let τ = { 〈̇γ̇, πγ 〉̇ | γ < α }×{1P}, where 〈̇x, y〉̇ denotes the name for which
〈̇x, y〉̇G = 〈xG, yG〉. τ ∈ MP since M is a ctm. Moreover,

τG = { 〈γ, (πγ)G〉 | γ < α }.

So τG is a function with domain α and σG ⊆ rng τG, as desired. SDG

Remark. Hence, M [G] is a ctm; putting this result together with previous re-
sults, we have now shown (modulo the proofs of Truth and Definability) that
there is a G for which

M [G] |= ZFC + ¬CH,

and therefore that CH is formally independent of ZFC!

15 Ramsey cardinals

Remark. And now, for something completely different! We will now attempt to
show that

ZFC + Q ` V 6= L,

where Q is a large cardinal axiom. But first, Ramsey’s Theorem!

Definition 15.1. For any set κ, we introduce the notation

[κ]n = {x ⊆ κ | card(x) = n },

that is, the collection of n-element subsets of κ. While this definition makes
sense for any cardinal n, we will only use it for n ∈ ω.

Definition 15.2. For any cardinals κ and λ, we define the relation

κ → (λ)n
µ

to hold iff for every function f : [κ]n → µ, there exists a set x such that

• x ⊆ κ,

• card(x) = λ, and

• f ¹ [x]n is constant.

Remark. f : [κ]n → µ can be seen as a labeling of the n-element subsets of κ,
using labels from µ. For example, if n = 2, such an f can be thought of as an
edge coloring of the complete graph on κ nodes, using µ colors. If κ → (λ)2µ
holds, it means that we can find a subset of nodes of size λ which induces a
monochromatically colored complete subgraph.
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Theorem 15.3 (Ramsey’s Theorem). ω → (ω)n
m for all n,m ∈ ω.

Remark. This seems somewhat surprising! But it is true. In the finite case, it
is famously true that for any l ∈ ω, there exists some k ∈ ω such that k → (l)22,
but the growth rate of the smallest such k with respect to l is astronomical (and
unknown). Note famous quote by Erdős regarding this function and hostile
aliens.

Proof. We will only prove the case for µ = n = 2; it should be straightforward
to see how to generalize the proof.

Let f : [ω]2 → {0, 1}. We wish to construct a set X ⊆ ω of size ω for which
f ¹ [X]2 is constant. We mutually construct three sequences ai, bi, and Xi as
follows:

X0 = ω

a0 = 0
Xi+1 = {n ∈ Xi | f({ai, n}) = bi } bi ∈ {0, 1} such that Xi+1 is infinite
ai+1 = least n ∈ Xi+1 such that n > ai

Note that we can always pick an appropriate bi by an infinite version of the
pigeonhole principle.

Again by the pigeonhole principle, either infinitely many bi = 0, or infinitely
many bi = 1. So we may choose X = { ai | bi = b }, for whichever value of b
makes X infinite (note that all the ai are distinct since we chose them to form
an increasing sequence).

We claim that f ¹ [X]2 is constantly b. Let ai, aj ∈ X, and suppose, without
loss of generality, that j < k. We know that ak ∈ Xk; but since the Xi form a
decreasing chain, ak ∈ Xj+1 as well. But then by definition, f({aj , ak}) = bj =
b. SDG
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