Definition 15.4. κ is weakly compact iff κ is uncountable and $\kappa \to (\kappa)_2^2$.

Lemma 15.5. If κ is weakly compact, then $\kappa \to (\kappa)^2_{\mu}$ for every $\mu < \kappa$.

Proof. The proof is a problem on the final exam.

SDG

Lemma 15.6. If κ is weakly compact, then κ is strongly inaccessible.

Proof. We must show that κ is regular, and that it is a strong limit.

• κ is regular. Suppose otherwise; then let $\lambda < \kappa$ and $\{\gamma_{\alpha} \mid \alpha < \lambda\} \subseteq \kappa$ an increasing sequence with $\sup\{\gamma_{\alpha} \mid \alpha < \lambda\} = \kappa$. Without loss of generality, assume $\gamma_0 = 0$.

We note that γ naturally induces a partition of κ into λ many segments. Now, define

$$f(\{\delta,\zeta\}) = \begin{cases} 0 & \exists \alpha \ge 0.\delta, \zeta \in [\gamma_{\alpha}, \gamma_{\alpha+1}), \\ 1 & \text{otherwise.} \end{cases}$$

f induces a 2-partition on $[\kappa]^2$; hence, since κ is weakly compact, there must be some set $Y \subseteq \kappa$ of cardinality κ where f is constant on $[Y]^2$.

Since f is constant on $[Y]^2$, there are two cases to consider. First, we could have $Y \subseteq [\gamma_{\alpha}, \gamma_{\alpha+1})$ for some α ; but this is a contradiction since $|[\gamma_{\alpha}, \gamma_{\alpha+1})| \leq \gamma_{\alpha+1} < \kappa$, and $|Y| = \kappa$. Alternatively, we could have $\operatorname{card}(Y \cap [\gamma_{\alpha}, \gamma_{\alpha+1})) \leq 1$ for all α . But then $|Y| \leq \lambda < \kappa$, another contradiction.

• κ is a strong limit. Suppose otherwise, that is, there is some $\lambda < \kappa$ with $\kappa \leq 2^{\lambda}$. Then there exists some injective function $g \xrightarrow{1-1} {}^{\lambda}2$. (Recall that ${}^{\lambda}2$ is the set of functions from λ to 2.) Now use g to define a partition $f : [\kappa]^2 \to \lambda$ as follows:

 $f(\{\alpha, \beta\})$ = the least γ for which $g_{\alpha}(\gamma) \neq g_{\beta}(\gamma)$.

We note that f is total since g is injective.

However, it is impossible to find a homogenous set of size three under this partition, much less size κ .

SDG

Definition 15.7. κ s a *Ramsey cardinal* iff $\kappa \to (\kappa)_2^{<\omega}$.

Lemma 15.8. If κ is a Ramsey cardinal, then $\kappa \to (\kappa)^{<\omega}_{\mu}$ for all $\mu < \kappa$.

Proof. This is also a problem on the final exam.

Lemma 15.9. Suppose κ is a Ramsey cardinal, and $\langle D, N, E \rangle$ is a directed graph with a binary coloring on the nodes (in particular, D is the set of nodes, $N \subseteq D$ is the set of nodes which are red, and $E \subseteq D \times D$ is the set of edges) such that $|D| = \kappa$ and $|N| = \lambda < \kappa$. Then there is some $\langle D', N', E' \rangle \preceq \langle D, N, E \rangle$ such that $|D'| = \kappa$ and $|N'| = \aleph_0$.

Proof. Fix a collection of Skolem functions for $\langle D, N, E \rangle$, and let h(X) denote the Skolem hull of X in $\langle D, N, E \rangle$ for $X \subseteq D$.

For every finite $C \subseteq D$, let

$$f(C) = N_C$$
 where $h(C) = \langle D_C, N_C, E_C \rangle$.

Since $N_C \subseteq N$ for each $C \subseteq D$, we note that $f : [D]^{<\omega} \to \mathcal{P}(N)$, so it is a partition of finite subsets of D into at most 2^{λ} classes.

Since κ is a Ramsey cardinal, it is weakly compact, and hence strongly inaccessible by Lemma 15.6. Therefore $2^{\lambda} < \kappa$, and again since κ is a Ramsey cardinal, we conclude by Lemma 15.8 that there is some set $Y \subseteq D$ of cardinality κ for which f is constant on $[Y]^n$ for all $n \in \omega$. For each n, let $X_n = f(C)$ for |C| = n.

Note that X_n is countable for all n, since $f(C) = N_C \subseteq D_C$, and the Skolem hull of a finite set is countable.

Now let $\langle D', N', E' \rangle = h(Y)$. We claim that $h(Y) = \bigcup_{C \subseteq_{\text{fin}} Y} h(C)$, where $A \subseteq_{\text{fin}} B$ denotes that A is a finite subset of B: a proof that $y \in h(Y)$ consists of a finite tree with elements of Y at the leaves and Skolem functions at the internal nodes, so for each y we may choose C to be the set containing all the leaves.

 $h(Y) \preceq \langle D, N, E \rangle$ by construction; $N' = \bigcup_{n \in \omega} X_n$, which is countable; and taking the Skolem hull preserves cardinality, so $|D'| = |Y| = \kappa$.