Lecture 1: Introduction and Axioms
January 19, 2009

1 Introduction

Remark. Generally speaking, there are two sorts of mathematical theories:
those, like number theory, that seek to describe and explore some particular
structure; and those, like group theory, that seek to generalize structures found
elsewhere. In this respect, we conceive of set theory as being more like number
theory: it seeks to describe the cumulative hierarchy of sets.

The cumulative hierarchy of sets begins with just the empty set; then we
use the power set operator to build further levels.

Vo=10
Vn+1 = P(Vn)

Each of these stages is finite. We can then construct a limit stage as follows:

V., is known as the collection of hereditarily finite sets: any set in V,, is finite,
and so are its elements, and the elements of its elements, and the elements of
elements of elements. . .and so on.

We also want to be able to deal with infinite sets—in fact, set theory was
introduced by Cantor in the 1880s partly to deal with infinity in the context of
real analysis. So we can introduce

Vit1 =P(Vy)

and so on, leading to the notion of transfinite ordinals. Much more will be said
about this in time.

So set theory is about saying as much as possible about this cumulative hi-
erarchy of sets; characterizing both the “height” (ordinals) and “width” (power
set operator).

2 Zermelo-Frankel Axioms

Remark. This axiomatization of set theory was developed first by Zermelo in
1908 and extended by Frankel and Skolem in 1922/3. The Zermelo-Frankel
axioms with the Axiom of Choice are often abbreviated “ZFC”. This is a first-
order theory with = and € the only non-logical symbols. The axioms are as
follows.



. Extensionality.
VeVy.(Vzze€x & z€ey) =>ax=y.

Two sets are equal if they have the same elements.

. Pairing.
VeVy.JzVw.(w ez e (w=2Vw=y)).

We can form a set with two given sets as elements (i.e. an unordered pair).

Note that we can now form “ordered pairs” by identifying the ordered pair
(z,y) with the set {{z}, {z,y}}; note that the set {z} exists by the axiom
of Pairing (pair z with itself).

. Union.
Ve.dyVz.z ey s (Guww €z Az €w).

For every set x there exists a set y (which we will abbreviate | J ) whose
elements are exactly the elements of the elements of x.

. Power set.
Ve.dyVzzey sz Ca.

For every set = there exists a set y (abbreviated P(x)) whose elements are
precisely the subsets of . Note that we use z C = as an abbreviation for
Yww € z = w € .

. Comprehension. If ¢ is a first-order formula which does not contain y free,
then
Ve.JyVz.z ey < (2 € x Ap(z)).

Note that this is an axiom schema representing an infinite number of
axioms, one for each . This says that we may “carve out” those elements
of = satisfying ¢ to form a new set y.

Initially, this axiom was expressed by Frege as
JyVz.z € y < (z),

now known as the “naive extension principle”. In 1902 Russell showed
that this led to his now-famous paradox: if we let ¢(z) = z &€ z, then
the nalve extension principle says there is some set y such that for all
z, z € y & z & z—but if we take z to be y, this results in the absurd
conclusion that y € y < y € y. The axiom schema of comprehension
avoids this by insisting that we can only use a formula ¢ to cut sets out
of pre-existing sets, not to create a set out of thin air.

Note that Comprehension gives us the empty set, if we take (say) p(z) =
z # 2.



6. Infinity.
IhexAVy.(yex= (yU{y}) € ).

The set asserted to exist by this axiom looks like

{0,{0}.{0,{0}},...}

and is called w.

Note that axioms 1-5 are all true in V,,, the collection of hereditarily finite
sets. The axiom of infinity is the only one which requires the existence of
transfinite ordinals.

Also, observe that V,, ., models axioms 1-6. These axioms, plus the Axiom
of Choice, constituted Zermelo’s 1908 theory. Skolem and Frankel added
the next axiom to force the existence of a larger universe.

To see the problem, note that in V4, we can define the function n +—
w + n, but this is a function whose domain is V,, but whose range is not
a set in V,,4,! This seems strange. So, Skolem and Frankel added. ..

7. Replacement.

Va.Vy Vz.((e(z,y) No(z,2)) = 2 =1y)
= VYw.FvVu.(u € v & Jr.x € w A @(x,u)).

If ¢ defines a functional relation, then the image of any set under ¢ is also
a set.

This forces the universe to be much larger: in fact, we can (and will) show
that if Vp models these axioms, then 6 is a strongly inaccessible cardinal,
whose existence cannot be proven within ZFC!

There are still two additional axioms: the Axiom of Foundation (aka Regu-
larity) and the Axiom of Choice; we’ll discuss them later.
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3 Well-orderings

Definition 3.1. A binary relation T on a set A is a subset of A x A. We also
define

dom(r) = {x [ 3y.(z,y) €r},
rmg(r) ={y | Jz.(z,y) € r},and
fld(r) = dom(r) U rng(r).
Definition 3.2. A binary relation r is a strict partial order iff
o Va.(x,z) & r, and
o Vayz. if (x,y) € r and (y,2) € r then (z,2) €1,

that is, if 7 is irreflexive and transitive. Moreover, iff for all  and y in fid(r),
either (z,y) € r or (y,x) € r or x =y, we say r is a strict linear order.

Definition 3.3. A strict linear order r is a well-ordering iff every non-empty
z C fld(r) has an r-least member.

Remark. For example, the natural numbers N are well-ordered under the normal
< relation. However, Z, Q, and Q™ are not.
However, we want to be able to talk about well-orderings longer than w. For

example,
0,2,4,...,1,3,5,...

is an alternative well-ordering of the natural numbers which is longer than w.

Definition 3.4. f : X — X is order-preserving iff for all y,z € X, y < z
implies that f(y) < f(z).

Theorem 3.5. If (X, <) is a well-ordering and f is order-preserving, then for
everyy € X, y < f(y).

Proof. Suppose otherwise, namely, that there exists some z € X for which
f(2) < z. Let zp be the least such z. Since f is order preserving, we we also
have that f(f(z0)) < f(20); but this contradicts the minimality of zo. e

Remark. One formulation of the Axiom of Choice states that for every set z,
there exists some binary relation r such that (x,r) is a well-ordering.

Theorem 3.6. If < well-orders x, then the only automorphism of (x,<) is the
identity. Such a structure is called rigid.



Proof. Let f be an automorphism (that is, an order-preserving, onto map) of
(x,<). (Note that if f is order-preserving, it must be 1-1 as well.) We first
note that f~! is also order-preserving: if y < z but f=(y) > f~1(z), we could
apply f to both sides to derive a contradiction. Therefore, by Theorem 3.5, for
any y € x, we have f(y) >y and f~!(y) > y. Applying f to both sides of the
latter inequality, we obtain y > f(y); hence y = f(y) and f is necessarily the
identity. B4

Corollary 3.7. If (z,<) and (y,<') are isomorphic well-orderings, there is a
unique isomorphism between them. Otherwise, we could derive a non-trivial
automorphism by composing one isomorphism with the inverse of another.

Definition 3.8. Given (z, <) and y € z, we can define the initial segment of x
determined by vy,
Init(z,y, <) ={z€z|z<y}.

Theorem 3.9. If (z,<) is a well-ordering, there is no z € x for which (x, <)
is isomorphic to Init(z, z, <).

~

Remark. This is certainly not true for non-well-orderings. For example, (Q, <)
Init(Q, 2, <) for every z € Q!

Proof. Suppose z € x such that (z,<) = Init(x,z,<). This is an order-
preserving map that sends z to something less than itself; this contradicts The-
orem 3.5. =

Theorem 3.10. For every pair of well-orderings w = (x,<) and w' = (y,<'),
either

o W,
o w = Init(w', z,<’) for some z € y, or
o w' = Init(w, z, <) for some z € x.
Proof. Consider the set
f={(z2)]z€z27 €y it(z, z, <) = nit(y, 2/, <) }.

We first show that f is a function. If we had (z,z’) and (z,2”) both elements
of f, with 2/ # 2", then we would have Init(y,z’) & Init(x,z) = Init(y, z").
However, one of Init(y, 2’) and Init(y, 2”’) is an initial segment of the other, so
this contradicts Theorem 3.9.

A similar argument shows that f is 1-1.

Note that dom(f) is an initial segment of (z, <), and rng(f) is an initial
segment of (y,<’). Also note that either dom(f) = z or rng(f) = vy, since
otherwise f could be extended. The three cases stated in the theorem correspond
precisely to when both the domain and range of f are full, when the domain is
full, and when the range is full. 4
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4 Ordinals

The ordinals are canonical well-ordered sets.
Definition 4.1. A set x is transitive iff Vy.y € . — y C x.
Remark. If z is transitive, then z € y € 2 — z € z.
Definition 4.2. z is an ordinal iff
e I is transitive, and
o (z,€[ x) is a well-ordering.
Remark. In what follows, we use «, 3, and =y to refer to arbitrary ordinals.
Lemma 4.3. If x € o, then x is an ordinal.

Proof. Since « is transitive, x C a; therefore it is clear that (x, €[ ) is a well-
ordering since (o, €] a) is. To see that x is transitive, suppose the contrary.
That is, suppose there is some y € x and z € y such that z € x. Note that z, y,
and z are all elements of «, since « is transitive. Since « is well-ordered under
€, either x = z or z € z. If x = 2, then z € y € 2z, contradicting the fact that
« is well-ordered; if € z, then = € z € y € x, contradicting the fact that x is
well-ordered. 4

Lemma 4.4. If 3 C « and 8 # « then § € .

Proof. Consider the set a — 3, which is nonempty by the given premises. Let
be the €-least element of a — 3. Then 8 = -, which can be shown as follows.
(C). Suppose there is some element x € § for which x ¢ ~. Since = and ~
are both elements of a, we must therefore have v < x € 3. Since [ is transitive,
this implies that v € 3, a contradiction.
(D). Suppose x € «; then we must also have x € [3, since otherwise it would
be an element of o — 3 less than -y, contradicting the definition of ~. &

Lemma 4.5. For every «, (3, either « C 8 or 8 C «.

Proof. Suppose otherwise. Consider v = aN 3, which by assumption is a proper
subset of both o and B. It is easy to check that v is an ordinal. But then by
Lemma 4.4, v € a and v € 3, so v € a N B =+, a contradiction. [

Theorem 4.6. The class of ordinals is well-ordered by €.

Proof. This follows directly from Lemmas 4.4 and 4.5. X



Theorem 4.7. For every set x there is an a such that o & .

Proof. The proof of this theorem is the Burali-Forti paradoz. Suppose there is
a set x of which every ordinal is an element. Then by comprehension we may
form the set

ord={a € x| «is an ordinal }.

But by Theorem 4.6 we can see that ord is well-ordered; by Lemma 4.3 it is
transitive; hence, ord € ord, a contradiction. 5

Remark. Theorem 4.7 can equivalently be stated as “the class of ordinals is a
proper class.”

Some examples of ordinals:

0, {0}, {0,{0}}, {0,{0}.{0,{0}}}

can all easily be checked to be ordinals. Also, if « is an ordinal, then aU {a} is
also.

Definition 4.8. The successor of a, denoted o + 1, is U {a}.

Theorem 4.9. a+1 is an ordinal. Moreover, it is the least ordinal bigger than
a.

Proof. Tt is easy to see that (o U {a}, €) is a strict linear order: for any x,y €
a U {a}, with z # y, either z,y € « (in which case x € y or y € z), or one
of z,y is equal to a and the other is an element of . That every non-empty
subset has an €-least member follows easily. To see that a U {«} is transitive,
it suffices to note that o C aU {a}.

To show that a + 1 is the least ordinal bigger than «, suppose that g > a.
Then by definition, a € 3, and therefore « C 3; so a +1 = aU{a} C 5. By
Lemma 4.4, o +1 < . &

Definition 4.10. « is a successor ordinal iff « = §+ 1 for some §. Otherwise,
a is a limit ordinal.

Definition 4.11. The smallest non-zero limit ordinal is called w (and it exists
by the Axiom of Infinity). The elements of w are called natural numbers.

Definition 4.12. x ~ y iff there exists a functional relation which is a 1-1, onto
mapping from z to y.

Definition 4.13. A set x is finite iff there exists some n € w for which z ~ n.

Theorem 4.14. For every well-ordering (x, <) there is an ordinal o such that
(z,<) is isomorphic to {a, €[ ).

Proof. XXX finish me! B4

Theorem 4.15 (Transfinite Induction). If



1. ¢(0),
2. p(la) = p(a+1), and
g ImA\) A (V8.8 <A = o(B) = »(\),

then ¥3.0(5).

Proof. Suppose not; let 4 be the €-minimal ordinal for which —¢(). A simple
argument by cases (whether v is (), a successor ordinal, or a limit ordinal) shows
that v cannot exist. =
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Definition 4.16. The class of sequences Seq is defined by
Seq = { f | ord(dom(f)) A f is a function }.

Theorem 4.17 (Transfinite Recursion). For any functional relation G : Seq —
V', there exists a unique functional relation F satisfying

for all a.

Proof. We will show that for every a there is a unique function f, such that
dom(f,) = a, and V3 < «,

fa(B) = G(fa 1 ),

and Vy < B, fo 17 = f.
The proof is by transfinite induction.

o a=0. fo ={} trivially satisfies the conditions.

e oo = 3+ 1. By the IH, assume there exists a unique fz that satisfies the

conditions. Now let
S fs(v) <8
fo1() = {G(fg) =B,

We must show that for every § < 8+1, fg+1(d) = G(fg+1 | ). There are
two cases.

— If § = 3, then fz11(0) = G(fg) = G(fs+1 | B), since it is clear from
the definition of fsy1 that fg+1 [ 8 = fs.

— If § < G, then fg41(8) = fp(d), which is equal to G(fg [ 0) by the
IH. But this is equal to G(fg+1 [ §) by definition of fzy.

By the IH, we already know that fg | ¢ = f¢ for all {( < 8; we must show
that forall ¢ < B+ 1, fg+1 | ¢ = f¢. First, if ¢ < 3, this follows from the
IH and the definition of fg41. If ( = B, we must show fzi1 [ = fs; this
follows immediately from the definition of fgy;.

The last thing we must show is that fg;1 is unique. Suppose there is
some h which also satisfies the conditions, that is, dom(h) = § + 1 and
V6 < B+ 1,h(6) = G(h | §). Then pick § < f+ 1 to be the smallest
ordinal for which h(d) # fg+1(d). Then fgr1 [ d = h [ 6, so fz1(d) =
G(fs+1 [9) =G(h | ) = h(d), a contradiction.



e lim(c). By the IH, assume that for all 8 < a, there exists a fg satisfying
the conditions. Then let fo =Ujs_,, f5-

First, we must show that f, is a set. This follows from the Axiom of
Replacement, since it is the union of the image of a under the map 8 — f3,
which is a functional relation by the uniqueness of fg under the IH.

The fact that f, is functional follows from the IH, since we know that
falvy=f forall v <g.
Let 8 < a. Then

fa(B) = fp+1(B) B+1<a,def. of f,
=G(fp+1 1 P) IH
=G(fa I 0) intuitively obvious...?

We need do nothing to establish that Vy < 8 < «, fg [ v = f; it already
holds by the inductive hypothesis.

The argument for the uniqueness of f,, is the same as in the previous case.

Now define F(a) = G(f,). We claim that F satisfies the theorem. Note
that F' is a functional relation since we have defined it pointwise. Note also
that F' | « is a set (by Replacement: F' | a = {(8,F(8)) | B € a}). To see
that f, = F | «, consider any 8 € dom(f,) = dom(F | «) = a; we have
fa(B)=G(fa I B) =G(fp) = F(B). &

5 Cardinals

Definition 5.1. X is equivalent to Y, denoted X ~Y (or | X| = |Y]), if there
. . 1-1
is a mapping f: X — Y.

Definition 5.2. X <Y if there is a mapping f: X Ly,

Theorem 5.3 (Cantor-Schroder-Bernstein). X <Y AY <X = X ~Y.

Proof. Suppose f : X L ¥ and g:Y 1L X are functions implied by the
premises. Let

Xo=X—g(Y)
Xnt1= (g0 f)(Xy)
X, = X

new

and define

) f(a) a€ X,
h(a)_{g_l(a) aeX—-X,.

10



Note that h is total, since if a € X — X, then a € Xy, so a € rng(g) and
g 1(a) is defined.
We claim that & is a one-to-one, onto function from X to Y.

e To show that h is one-to-one, suppose a,b € X and h(a) = h(b). If
a,b € X, then f(a) = f(b), so a = b since f is one-to-one. If a,b & X,
then g~(a) = g~ 1(b); applying g to both sides yields a = b. So, without
loss of generality, suppose a € X, and b ¢ X, f(a) = g~*(b); we claim
this case is impossible. Applying g to both sides yields g(f(a)) = b; but
since a € X,, then b is also, a contradiction.

e Now we show h is onto. Let b € Y, and let f(X,) =Y,. If b € Y,
then it is in the image of h, since h(X,) = f(X,) = Y,. Otherwise,
consider g(b). g(b) ¢ X.,; if it were, g(b) € X,, for some n, so we would
have g(b) = g(f(q)) for some ¢ € X,,_1. But since g is one-to-one, this
implies b = f(q), that is, b € Y,,, a contradiction. Therefore, h(g(b)) =

9~ (g(b)) =

Definition 5.4. X <Y if X <Y andY £ X.

Theorem 5.5 (Cantor diagonal). For every X, there exists a Y such that
X<Y.

Proof. Claim: X < P(X). Let f: X — P(X), and define

a={beX[bgf(b)}

Note that a € P(X). We claim that a & rng(f). If it were, there would be some
c € X with f(c) =a;is c € f(c)? If it is, it isn’t; if it isn’t, it is. So there. f is
not onto.

Note that X < P(X), since f(a) = {a} is a one-to-one mapping.

If P(X) < X, by Cantor-Schroder-Bernstein there would be a one-to-one,
onto map between them, but we have shown that any mapping X — P(X) is
not onto. Therefore, X < P(X). B

Remark. Why is this called a diagonal argument? Note that P(X) ~ 2% (where
XY, also sometimes written ¥ X, denotes the set of functions from Y to X ). In
particular, if Z C X, we set Z € P(X) to the indicator function

1 acZ
gZ(a){o ad 7.

In the special case that X ~ w, if we assume there exists a 1-1, onto mapping

from X to P(X), we can make a table of the indicator functions to which each
element of X is sent, as follows:

11



To X1 To I3
zo 1 0 1 1
T 0 1 0 1
zz2 0 0 O 1
zz 1 0 0 O

The ith row is the indicator function describing the subset to which z; is sent.
Now we simply note that the argument in the above proof corresponds to picking
out the diagonal elements (here 1,1,0,0,...), flipping them (0,0,1,1,...), and
noting that the resulting sequence cannot be a row of the table.

Definition 5.6. « is a cardinal iff k is an ordinal such that a % k for all « € k.

Remark. A cardinal x is an initial ordinal—the smallest ordinal having its car-
dinality.

Exercise: show that every natural number is a cardinal, and that w is a
cardinal (w is the first infinite cardinal).

Remark. By Theorem 5.5, we know that w < P(w). A natural question arises:
is there some X C P(w) for which w < X < P(w)? This is an interesting
question, especially given that it can be shown that R ~ P(w). Hilbert thought
this question so important that he made it the very first problem in his famous
1900 list.

Cantor hypothesized that there does not exist such an X; this hypothesis
is known as the continuum hypothesis (CH). This is a reasonable hypothesis,
especially given the establishment of various special cases, such as the fact that
for all X C R, if X is closed, then it is not the case that w < X < R (Cantor-
Bendixson).

It turns out that the continuum hypothesis is independent of ZF: Godel in
1939 showed that the consistency of ZF implies the consistency of ZF + AC
+ CH; but Cohen showed in 1963 that the consistency of ZF also implies the
consistency of ZF + AC + - CH.

12
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Definition 5.7 (Well-ordering principle). For every set X, there exists a bijec-
1-1

tion f:a —— X for some ordinal «.
onto

Remark. In other words, the well-ordering principle states that every set X can
be well-ordered, since there is a 1-1 projection from some ordinal onto X.

Definition 5.8 (Axiom of Choice). For every set X which is a collection of
nonempty sets, there exists a function f with dom(f) = X and for every y € X,

fy) €y

Remark. f is a “choice function” which chooses one element of each element of
X.

Theorem 5.9. The well-ordering principle and axiom of choice are equivalent.

Proof. (WOP = AC) Suppose X is a collection of nonempty sets. Then
let Z =JX. By the well-ordering principle, there is some ordinal § and some
function g for which

Z={g(v)|v<d}.

But then let f: X — Z be defined by f(y) = g(8) where  is the least ordinal
for which ¢g() € y. By definition, dom(f) = X and f(y) € y for every y € X.
To see that f is well-defined, just note that y C Z and g is onto.

(AC = WOP) Let X be a set and define

Z =P(X)— {0},

which is clearly a collection of nonempty sets. Let f be a choice function for Z.
Then define

G(B) = f(X —{G() |y < BY}),
which is clearly 1-1. Then for some ¢, we have { G(5) | 8 < § } = X; otherwise,
G would be a 1-1 function from the ordinals into X, and the ordinals would be

a set (by the Replacement Axiom under G~! applied to X), a contradiction.
Therefore G [ § is a bijection from ¢ to X. &

Definition 5.10. The cardinality of X, denoted |X|, is the least § for which

. 1-1
there exists an f: 3 — X.
onto

Remark. It is easy to see that the cardinality of any set is a cardinal (the proof
is left as an exercise for the reader).

Note that we require the Axiom of Choice/Well Ordering Principle for the
cardinality operator | — | to be well-defined.

Theorem 5.11. For every cardinal K, there exists a cardinal A with kK < .

13



Proof. This follows from Cantor’s theorem, since x < 2*. &

Corollary 5.12. It follows that the class of cardinals is a proper class. For if
there were a set X of all cardinals, then | J X = Ord would be a set.

Remark. The proof of Theorem 5.11 implicitly relied on the Axiom of Choice
in its use of cardinality. We can also supply an alternative proof that does not
use the Axiom of Choice:

Proof. Let k be a cardinal and consider an ordinal A > k. If there is a 1-1
map from A to k, it defines a well-ordering on a subset of k. However, the class
of well-orderings on subsets of k form a set: a well-ordering on any particular
subset z € P(k) is just an element of the set P(z x z), so by the axioms of
replacement and restriction we may form the set of all such well-orderings.

Therefore, there cannot exist a 1-1 map from every ordinal larger than x
into k; otherwise the ordinals would form a set.

So, choose the least ordinal for which there does not exist a 1-1 map into «;
this is the next cardinal after x, denoted . 4

Definition 5.13. By transfinite recursion, we define

No = w
Na+1 = Nl_
Ny = U Nz when lim()\).
B<A

Remark. We note that R, is a cardinal: suppose there is some f : Ny , v,

for some v < Ny. Then for some 8 < A, v < Ng. But then f [ Ngy; is a 1-1
function from Ngy; into a subset of Ng, which is a contradiction by defition of

Ngi1.
Definition 5.14. f: Ord — Ord is a normal function iff f is order-preserving
and continuous at limits (that is, f(\) = supg,(f(3)) for A a limit ordinal).

Theorem 5.15. FEvery normal function has arbitrarily large fixed points.

Proof. Let f be a normal function, and pick any «. Define

Bo =«
6n+1 = f(/gn)
B = sup Bn-

Note that since f is order-preserving, 8y < ;. Then we have

£(B) = sup(f(Bn)) f is continuous
= glzg{ﬁnﬂ} defn. of 8
= sup{f,} Bo < B
=p defn. of 3

14



Hence (3 is a fixed point of f which is at least a. =

Remark. Note that 8 _) is a normal function; hence, there are arbitrarily large
ordinals v with v = X!

Definition 5.16 (Cofinality).
e X C ais cofinal in « iff sup(X) = a.
e Amap f: 08— aisa cofinal map iff rng f is cofinal in «.

e The cofinality of o, denoted cf(«), is the least 3 for which there exists a
cofinal map f: 0 — «a.

Remark. For example, cf(w) = cf(w + w) = cf(Ry,) = w.

Note that all the fixed points constructible by the method in the proof of
Theorem 5.15 have cofinality w. This begs the question of whether there exist
fixpoints with greater cofinality.

Exercise: show that if a > 0 is a limit ordinal, then cf(«) is a cardinal.

From now on when discussion cofinality we assume that any ordinals men-
tioned are nonzero limit ordinals. x and A will conventionally refer to cardinals.

Definition 5.17.
e r is reqular iff cf(k) = k; otherwise it is singular.
e kis a limit cardinal iff A < x = AT <.
e r is a strong limit cardinal iff A < k = 2* < k.
o r is weakly inaccessible iff it is a regular limit cardinal.
e r is (strongly) inaccessible iff it is a regular strong limit cardinal,

Remark. To look ahead, we will show that if 6 is strongly inaccessible, then
(Vo€ | Vo) |= ZFC.

The ST axiom asserts that there exists a strongly inaccessible cardinal; this
axiom cannot be derived in ZFC.

Definition 5.18 (Cardinal arithmetic).
K+ A=k x{0}UXx {1}
KX A=k XA

Theorem 5.19 (Cardinal arithmetic is trivial). For all K, > w, Kk X A =
K+ A = max(k, \).

Proof. We begin by defining a canonical map I" : Ord x Ord — Ord. In particu-
lar, define (a, 8) < (7, 9) iff either max(a, 8) < max(7, d), or the max’s are equal
and (a, ) is lexicographically smaller than (v, ). This defines a well-ordering
on Ord x Ord. Then we can define

I(a, B) =0, (0, €) ~ Init(Ord x Ord, (a, 8), <).
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We claim that I'[k x k] = k for every infinite k, which we show by transfinite
induction.

For the base case, we note that I'[w x w] = w, which is left as an exercise for
the reader.

In the inductive case, let xk be the least cardinal greater than w such that
[k x k] # K. Then for some o, € k, I'(a, 8) = k. Choose ¢ so max(«, 3) <
0 < k. Now, (4,0) determines an initial segment of Ord x Ord which contains
(o, ), so [0 x ] D k, and hence |0 x 6| > k. However, by minimality of k,
|0 %8| =|d] - |6] = |0] < K, a contradiction. e
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Lecture 6: Regularity, CH, and Konig’s Theorem
February 4, 2009

Lemma 5.20. Suppose that X is a collection of sets, and that |X| = k and
sup{|Z||Z € X } =X\ Then |[JX]| <k x A

Proof. By the well-ordering principle (AC), we can make an enumeration of X,
X={Z,|a<k}.

For each «, |Z,| = Ao < A. Again by the well-ordering principle, we can make
an enumeration of each Z,

Zo ={uap | B < Aot

Then we can write | J X as

UX:{uag\a</-i,6<)\a},
which clearly has cardinality at most x x A. [

Remark. This result is in some sense a generalization of the fact that Q is count-
able, with one important difference. To show that the rationals are countable,
we just have to exhibit a bijection between the rationals (or, more simply, be-
tween N x N) and the naturals. From this result, it seems like it should follow
that if X is a countable collection of countable sets, then | J X is also countable;
but to show this, we need the AC (which we don’t need to show the countability
of Q). Intuitively, this is because we need to be able to “pick” an ordering for
each Z € X.

The above result is more general yet: instead of talking about a countable
union of countable sets, is about a cardinality-x union of sets with cardinality
at most A; the fact about countable sets in particular follows from the fact that
WX w=w.

Lemma 5.21. For every ordinal o, there exists a strictly increasing cofinal map
from cf(a) to a.

Proof. Let g : cf(a) — a be a cofinal map. Then define f : c¢f(a) — a by

f(8) = max{g(B),sup(f(v) + 1)}

v<pB

By definition, sup(rng(f)) > sup(rng(g)) = a, so f is cofinal. f is also strictly
increasing: if 8 > v, then f(8) > sup, .5 f(7) > f(7). =

Lemma 5.22. cf is idempotent.
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Proof. Let «, 3, and v be ordinals such that cf(a) = § and cf(8) = v. By
Lemma 5.21, suppose f : 3 — « and g : v — [ are strictly increasing cofinal
maps. Let § € a. Since f is a cofinal map into «, there must be some ¢ € (3 for
which f(¢) > §. Likewise, there must be some 7 € «y for which g(n) > ¢. Since
f is strictly increasing, we conclude that f(g(n)) > f(¢) > &; hence fogis a
cofinal map into «, and § = 7. &

Lemma 5.23. If a > 0 is a limit ordinal, then cf(a) is an infinite, regular
cardinal.

Proof. By definition, cf(«) is the least 8 for which there exists a cofinal map
f: 8 — «a (that is, for which sup(rng(f)) = «). Suppose that cf(«) is not a
cardinal. Then there exists some v < cf(«) such that v ~ cf(a), that is, there

exists some g : ¥y 1—t1> cf(a). But then fog: 7y — «is also a cofinal map,
onto

contradicting the minimality of cf(«). Also, cf(a) must be infinite since there
cannot exist a cofinal map from a finite set into an infinite one; cf(a) is regular

by Lemma 5.22. =

Theorem 5.24. For every k > w, k™ is reqular. That is, Noy1 is regqular for
all o

Remark. To help provide some intuition for the relationship of this theorem to
Lemma 5.20, we can show the following special case, namely, that wt = Ry is
regular.

Suppose otherwise, namely, that c¢f(X;) = w (note, by Lemma 5.23, that this
is the only choice for cf(Xy) if Ny is not regular). That is, for some f:w — Ny,
rng(f) is cofinal in 8y, i.e., [Jrng(f) = Ry. Now, we note the following facts:

e |rng(f)| = w. This is clear since dom(f) = w.

e For every a € rng(f), || < w. This follows since a € Ny, so the biggest
its cardinality could possibly be is g = w.

Hence |Jrng(f) is a countable union of countable sets—but we know this is
countable, so it cannot be equal to Ny.

Proof. We now give a general proof of Theorem 5.24; it follows much the same
shape as the preceding remark.

For purposes of contradiction, suppose that X1 is not regular, that is, there
is some cofinal map f : Ng — N,y; where § < a. Then Jrng(f) = Nqq1. If
v € mng(f), then |y| < Ro41. Therefore, |rng(f)| = Ng and sup(rng(f)) = Rq,
so by Lemma 5.20, the cardinality of |Jrng(f) is a x 8 = max(«,3) < a + 1,
contradicting the cofinality of f. &

Remark. Theorem 5.24 asserts that all successor cardinals are regular. However,
it turns out that we can’t even prove that there exist any regular limit cardinals
(i.e., weakly inaccessible cardinals) other than w!
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Recall that the Continuum Hypothesis posits that there is no cardinal inter-
mediate between w and |P(w)|; that is, there does not exist a set X such that
w < |X| < |P(w)]. Given the AC, we can reformulate this as the equality

2N0 = Nl?

that is, |P(w)| is the next cardinal after Y.
This suggests what is known as the Generalized Continuum Hypothesis
(GCH):
Vi, 28 = kT,

Note that in the presence of the GCH, “weakly inaccessible” and “strongly
inaccessible” are equivalent.

Using the model of constructible sets, Godel in 1939 showed that ZF + AC
+ GCH is consistent if ZF is; it’s relatively clear what this system would look
like. However, Cohen showed that ZFC + —CH is consistent if ZF is; what does
ZFC look like with —CH? In fact, it turns out that for every o > 0, ZFC +
(2% = N, 1) is consistent if ZF is! Moreover, for every A, if ¢f(A\) > w, then
ZFC + (2% = RN,) is consistent if ZF is. That is, 2% could be Xy, or Xy, or
N, 41, but it could not be R, or N, ,,, and so on.

Let’s prove that cf(280) > w. Strangely enough, in light of the previous
remarks, this is just about all we can say about 2%! This will follow as a
corollary to Theorem 5.27.

Definition 5.25. Given a collection of sets X; indexed by the elements of some
set I, we may form the sum

> X=X x {i}),
iel iel
that is, the disjoint union of all the X;’s, using the indices as tags.
Definition 5.26. Given a collection of sets X;, we may also form the product
[[Xi={r:1-JXilViel, fi)ec X;}.
i€l i€l

That is, [, X; is the set of functions which pick out an element of X; for each
i € I. As an example, R? = Hie{0,1,2} R is the set of functions that pick out a
real number for each of the three indices 0, 1, and 2; these can also be thought
of as ordered triples (although they are not actually triples in a technical sense).

Theorem 5.27 (Konig, 1905). Suppose that Vi € I, k; < ;. Then
Z Ky < H ;-
i€l i€l
Remark. We defer the proof of Theorem 5.27 to examine two corollaries.

Corollary 5.28 (Cantor’s Theorem (Theorem 5.5)).
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Proof. Let k; =1 and \; =2. Then > . ;1 ~1I,and [[,.; 2~ P(I). B

i€l el

Corollary 5.29. cf(2%0) > w.

Proof. Let f :w — 2% and for i € w let x; = |f(i)|; thus x; < 2%°. Also, let
i = 280 for all i. Then

sup k; < Zf{i < H)‘i = (2R0)Ro = gRoxFo _ oRo, &
i€w 1EW 1EW

Proof. We now prove Theorem 5.27. Suppose we have a family of sets Z;, and
let A\; = |Z;| and k; < A; for i € I. Now let Z = [],.; Z;, and for each i € I pick
(by the AC) some Y; C Z with |Y;| = ;. Then we will show that (J,.;Y; # Z,
from which the theorem follows immediately.

For each i € I, define w; = {g(i) | g € Yi}. Clearly |w;| < k; < A
Therefore, V; = Z; —w; # 0, and [],.; Vi # 0. (We note in passing that this is
another formulation of the AC—that the product of a nonempty collection of
nonempty sets is nonempty.)

But [[,.; Vi C Z is disjoint from (J

Yi; hence |J.., Y; # Z. B4

iel iel iel
Remark. This is a generalized “diagonal” argument, which explains why Can-
tor’s Theorem follows so readily as a corollary. Some additional commentary

should go here.
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Lecture 7: The Real Line
February 9, 2009

6 The Real Line

Definition 6.1. Let (Q, <) denote the rational numbers with the usual order-
ing. We define § to be a formula of first-order logic which expresses the fact
that Q is a dense linear order without endpoints. (Actually translating this into
first-order logic is left as an exercise for the reader.)

Definition 6.2. A partial isomorphism of orders is a map which is an isomor-
phism of its domain and range. That is, f : C' — D is a partial isomorphism if
for every e,e’ € C, e <c ¢/ = f(e) <p f(e’) whenever e, ¢’ € dom(f).

Definition 6.3. A set P of maps from C to D has the back-and-forth property
iff

e For every f € P and ¢ € C, there is some g € P such that f C g and
¢ € dom(g). (This is the “forth” part.)

e For every f € P and d € D, there is some g € P such that f C g and
d € rng(g). (You guessed it, the “back” part.)

Definition 6.4. C' and D are partially isomorphic, denoted C =p D iff there
is a nonempty set P of partial isomorphisms between C' and D which has the
back-and-forth property.

Remark. Note that the existence of a partial isomorphism between C' and D
does not, by itself, imply that C' and D are partially isomorphic.

Lemma 6.5. If C,D =6, then C =p D.

Proof. Define P to be the set of order-preserving maps f for which dom(f) is
finite, dom(f) C C, and rng(f) C D.

P is nonempty, because any singleton map from some element ¢ € C' to any
element d € D is trivially order-preserving.

To see that P has the “forth” property, suppose f € P and ¢ € C — dom(f).
Now suppose ¢ < min(dom(f)), which exists since dom(f) is finite. Then, since
D has no endpoints, there exists some d € D for which d < f(min(dom(f))).
Take g = f U (¢,d); g is order-preserving so ¢ € P. The case when ¢ >
max(dom(f)) is similar. Otherwise, let ¢; be the greatest element of dom(f)
less than ¢, and ¢y the least element of dom(f) greater than ¢; since D is dense,
there is some d € D for which f(c1) < d < f(c2). Again, take g = f U (¢, d);
then g € P.

The proof that P has the “back” property is similar, and uses the fact that
CESé. &
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Remark. We note that there are partially isomorphic orders which are not
isomorphic—in particular, by the previous lemma, Q =p R, but we know Q 2 R,
since they have different cardinality.

Theorem 6.6 (Cantor’s back-and-forth theorem). If the orders C and D are
partially isomorphic and card(C) = card(D) = N, then C = D.

Remark. By saying C is an order, we mean it is a pair (X, <¢), and define
card(C) = card(X).

Proof. Let P be the set of partial isomorphisms witnessing the fact that C' and
D are partially isomorphic. Since C' and D are countable, we may enumerate
them as

C ={co,c1,c2,...}
D = {do,dy,ds, ... .

Pick any f_; € P, and enlarge it to fo such that ¢y € dom(fy); fo € P since P
has the forth property.

Now we choose fi, fa, -+ € P as follows. At stage 2n + 1, pick fo,41 to
extend fo, with d,, € rng(fon41); at stage 2n + 2, pick fa,+2 to extend fan41
with ¢, € dom(fap42)-

Finally, let f = J,;c,, fi- f is a function, since fo € fi € fo C .... Also,
dom(f) = C and rng(f) = D by construction. Finally, f is order-preserving,
since if ¢; <¢ ¢j, then ¢;,¢; € dom(fymax(i,j)), and all the fi are order-
preserving. Therefore, f is an isomorphism. &

Corollary 6.7. For all orders A and B, if card(A) = card(B) = Rg and A = ¢
and B =0, then A~ B.

Proof. This follows immediately from Lemma 6.5 and Theorem 6.6. &

Remark. Note that there are C, D = 6 where card(C) = card(D) = 2% but
C % D. For example, take C =R and D = R — (IrrN [0, 1]), where Irr denotes
the set of irrational numbers. So ¢ only categorizes sets of cardinality Ng.

Exercise: show that for every x > Vg, there are 2* pairwise non-isomorphic
orders A of cardinality x 777

Definition 6.8. For a language L, we write A =;, B to mean “A and B can’t
be distinguished by sentences of L,” that is, forall p € L, A= ¢ < B = .

Remark. Ly, is the maximal language one gets by allowing application of
boolean operations (A, \/) to sets of first-order formulas. In other words, Lo,
allows infinite conjunction and disjunctions. In general, L., is the language
which allows taking the conjunction or disjunction of sets of formulas up to
cardinality k.

Theorem 6.9 (Karp). If A~p B then A=y__,.
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Remark. The proof is omitted. We note that this immediately implies that
Q =r..., R! So we need better tools to distinguish Q from R. What is true
about R that isn’t true about Q?

e R is order-complete; that is, every nonempty bounded set of reals has a
least upper bound. This is clearly not true about Q, as noted by the
ancient Greeks.

e R is seperable, that is, there exists a countable subset which is dense in R
(for example, Q).

So, let v denote the sentence whose interpretation is “R is a complete, separable,
dense linear order without endpoints.”

We can express v in second-order logic. In particular, to express the fact
that a predicate X corresponds to a countable subset of its domain, we can
write

35.S is 1-1 and almost onto on X, and X, S satisfies induction.

where “almost onto” means that | X —rng(S)| = 1, and “X, S satisfies induction”
means that

YYY(0)A (Y (n)ASn,m) = Y(m)) = (V/n.X(n) = Y(n)).
Theorem 6.10. If A, B |=~, then A~ B.

Proof. Let Q4 and QF be countable, linearly ordered subsets dense in A and
B, respectively. Since Q4 and QF are dense in A and B, they are dense as
well. Also, since A and B have no endpoints, neither do Q4 and Qf. Then
Q4,QF =4, and by Corollary 6.7, Q4 = QF.

Now, for every a € A, form the set

lc(a) ={beQ? |b<aa}.
(Ic(a) corresponds to the lower Dedekind cut for a.) Then define
DC(A) ={lc(a) |a € A},

ordered by C. Then we claim that (A4,<) = (DC(A),C) = (DC(B),C) =
(B,<).

First, note that Ic is an isomorphism from (A4, <) to (DC(A4),C).

Now we must exhibit an isomorphism between (DC(A), C) and (DC(B), C).
Let f: Q* — QP be an isomorphism. Then define a map F : DC(A) — DC(B)
which sends X to f[X]. We must show that F' is well-defined: it is not immediate
that f[lc(a)] € DC(B). Note that there must be some a’ € Q4 greater than
a. Moreover, since f is order-preserving, f(a’) is an upper bound of f[le(a)].
Therefore, since B is order-complete, there exists a least upper bound b € B of
fllc(a)]. We claim that fllc(a)] = lc(b). First, if € le(a), then f(z) € le(b)
since lc(b) contains all elements of Q¥ less than b. If y € lc(b), then there must
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be some = € lc(a) for which f(z) = y; otherwise, since f is onto, there would
have to be some 2’ > a for which f(z’) = y, but this would contradict the fact
that f is order-preserving.

F is order-preserving since X CY = f[X] C f[Y].

We can similarly define F~! : DC(B) — DC(A) which sends X to f~![X];
a parallel argument shows that F~! is well-defined and order-preserving.

Finally, we note that since f is an injection, f~![f[X]] = X, so F and F~!
are inverse, and therefore F' is an isomorphism. 4

Remark. lc in the preceding proof is an injection from R to P(Q); therefore,
card(R) < 2%o,

Definition 6.11 (Cantor set). Let C' = {0,2}*. Then |C] = 2%o.
Now for each f € C, form the sum

This gives the set of real numbers whose “trinary” expansions omit the digit 1.

Remark. We can also construct this set by taking Dy = [0,1], Dy to be Dgy
without the middle 1/3, Dy to be Dy with the middle 1/3 removed from each
of its subintervals, and so on recursively. Then C = (1, ., Dn.
Note that C is a closed set with maximal cardinality which is nowhere dense!
If each element of C defines a distinct real number, then we see that 280 <
card(R). Since we showed in the proof of Theorem 6.10 that card(R) < 2% in

fact card(R) = 2%o.

Definition 6.12. A subset of R is open if it is a union of open intervals. A
subset is closed if it is the complement of an open set.

Remark. Open sets form a topology on R, since they include R and () and are
closed under arbitrary unions and finite intersections.

Note that R has a countable basis, namely, the set of open intervals with
rational endpoints.

Remark. Consider [P(R)| = 22"° > 2% That’s a lot of sets! The CH states
that every element of P(R) is either countable or has the same cardinality as
R, but it seems difficult to get a handle on something quantifying over such a
large set. Perhaps we can make better progress if we look at simpler classes of
subsets of R, for example, open sets. There are only 2%° open sets, since each
is a countable union of intervals from the countable basis of R.
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Lecture 8: The Real Line, Part II
February 11, 2009

Definition 6.13. a € X is isolated in X iff there is an open interval I for which
X NI ={a}. Otherwise, a is a limit point.

Remark. Another way to state this is that a is isolated if it is not a limit point
of X.

Definition 6.14. X is a perfect set iff X is closed and has no isolated points.

Remark. This definition sounds nice and tidy, but there are some very strange
perfect sets. For example, the Cantor set is perfect, despite being nowhere
dense!

Our goal will be to prove the Cantor-Bendixson theorem, i.e. the perfect set
theorem for closed sets, that every closed uncountable set has a perfect subset.

Lemma 6.15. If P is a perfect set and I is an open interval on R such that
INP #0, then there exist disjoint closed intervals Jy, J; C I such that int[Jy] N
P #£ 0 and int[J;] N P # 0. Moreover, we can pick Jo and Jy such that their
lengths are both less than any € > 0.

Proof. Since P has no isolated points, there must be at least two points ag,a; €
INP. Then just pick Jy 3 ap and J; 3 a1 to be small enough. 4

Lemma 6.16. If P is a nonempty perfect set, then P ~ R.

Proof. We exhibit a one-to-one mapping G : 2¥ — P.

Note that 2“ can be viewed as the set of all infinite paths in a full, infinite
binary tree with each edge labeled by 0 or 1. We label each node in the tree by
the sequence of labels on the path from the root to the node.

Now we associate an interval I to each node s, with the properties that

e [, is closed,

e I, NP#0,

o I, C I,

e I[,oNI;1 =0, and
o [L| <1/(Is|+1),

where |I| denotes the length of interval I and |s| denotes the length of sequence
s.

In particular, if () denotes the empty sequence, let I;y be the closure of 1N P
for some open interval I with length at most 1 whose intersection with P is
nonempty. Then, given a set I, satisfying the above properties, by Lemma 6.15
choose I ¢ and I, 1 to be disjoint closed subintervals of I shorter than 1/(|s|+2)
whose intersection with P is nonempty.
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Now, for all f € 2%, define

G(f) = m I?(iy

P1EW

where f(n) = {f(0), f(1),..., f(n)}. Actually, we are abusing notation a bit
here: what we mean is that G(f) is the unique member of the given intersection;
we must show that this intersection does indeed result in a singleton set. This
follows from the fact that we have an infinite intersection of nested, closed in-
tervals of arbitrarily small length and that the real numbers are order-complete.

To see that G(f) € P, note that G(f) is an intersection of decreasing inter-
vals, each of which has a nonempty intersection with P; if we pick one point
from the intersection of each interval with P, they form a sequence with limit
G(f), which is contained in P since P is closed.

Finally, suppose f, f' € 2¢ with f # f’. Let n € w be the smallest index
for which f(n) # f’(n). Then I3, NI, = ) by construction, and therefore
G(f) N G(f") = 0. This shows that G is injective. ]

Theorem 6.17 (Cantor-Bendixson). If C' C R is closed and uncountable, then
there exists some perfect, nonempty P C C'.

Remark. In a sense, this is where set theory started. This proof is what mo-
tivated the development of transfinite ordinals, since it describes a recursive
process that is not completed after the first limit stage.

Proof. Let C' C R be closed. Define the Cantor-Bendizson derivative
C’' ={a € C|aisalimit point of C'}.

This operation maps closed sets to closed sets, since closed sets in R are those
which contain all their limit points, and the derivative is monotone and retains
all limit points. Then define

Co=C
CaJrl - (Ca)/
Cr=1[)Cs  (im())).
B<A

Note that C' is closed for all 3 by induction.

Claim: C, = C,4; for some . For if not, C,, # Cg for any « # (3, since C
is monotone. Then C(_y would be an injection Ord — P(C'), which is absurd.

Note that C., is perfect, since it consists solely of limit points and is closed.
If C, # 0, we are done.

We claim that C., cannot be @) since this would imply that C' is countable.
Consider Cg — Cg41, which contains all the isolated points in Cg. That is, if
a € Cg — Cay1, there exists an open interval I, 5 a such that Cg N1, = {a}.
In particular, we may choose I, to be an open interval with rational endpoints.
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Note that each I, is distinct; otherwise, at the earliest stage when I, arose,
it would have contained more than one point. Therefore, we have an injection
from C' into the set of intervals with rational endpoints, which is countable. &

Remark. The above proof shows that every closed set can be decomposed into
a perfect subset and a countable subset. (In fact, it turns out that every closed
set can be uniquely so decomposed.)

Definition 6.18. The smallest v in the above proof for which C, = C,4; is
called the Cantor-Bendixzson rank of C, and the above proof shows that v < Ny.

Exercise: construct closed sets whose Cantor-Bendixson rank is strictly
greater than w. In fact, it can be shown that for every 7 < Ny, there exists
a closed C' C R with Cantor-Bendixson rank ~.

Corollary 6.19. For every C C R, if C is closed and uncountable then C' ~ R.
This follows from Lemma 6.16 and Theorem 6.17.

Remark. We might hope that every uncountable set has a perfect subset; this,
of course, would resolve the CH. However. ..

Theorem 6.20. There exists a set X with card(X) = 2% = card(R — X) such
that for every perfect set P, PZ X and PZ R — X.

Proof. We use the AC to construct X. Let P,,a < 2%° be an ordering of the
perfect sets (there are 2% perfect sets; see Lemma 6.21). Also, let x, be an
ordering of R. Now define r,, to be the real number with next-to-least index in
the sequence z, which comes after all rg, 5 < v, and for which r, € P,. We
can keep picking such r, since each P, has cardinality 2% and therefore cannot
be contained in any initial segment of the z,’s. 4

Lemma 6.21. There are 280 perfect sets.

Proof. There are at least 2% perfect sets, since there is an injection from P(N)
to the set of all perfect sets: for each set of naturals, identify each natural with
a small closed interal containing it, and take the union. There are at most 2%
perfect sets since there are 2% closed sets (which, in turn, follows from the
fact that any closed set can be expressed as a countable intersection of rational
intervals). &
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Lecture 9: Relative Consistency I
February 16, 2009

7 The Axiom of Regularity

Remark. We will now move more towards logic. We want to be able to show
various independence results, such as that the consistency of ZF implies the
consistency of ZF + AC + CH (and also ZF + AC + —CH). In some sense we
can think of this as the “metamathematics” of set theory.

Definition 7.1 (Axiom of Regularity (Reg)). Every set has an €-minimal ele-
ment. Formally:

Ve.Fyy€x) = Jy.(yeaxANVzz ey = 2z ¢&x)).

Remark. This axiom implies that we cannot have a set z which is an element
of itself; then the set {} does not satisfy the axiom. We also cannot have a
cyclic chain of inclusions z; € z9 € 23 € -+ € 1, or an infinite descending
chain 21 3 29 D 23 O ...; in either case, the set {x1,za,x3,...} fails to satisfy
the axiom of regularity.

Note that we did not particularly need this axiom for the theory of Ord, Q,
R, and so on, since all of those classes are well-founded by definition. But it
will become convenient to restrict ourselves to well-founded sets when talking
about models of set theory.

One question to ask ourselves is, given Reg, could we still have non-well-
founded classes? The answer, it turns out, is no.

Definition 7.2. The transitive closure TC(z) of a set x is defined as follows:

o=

Tn1 = an
TC(z) = U T

new
Lemma 7.3. TC(x) is the C-least transitive set y such that z C y.

Proof. First we show that T'C(x) is transitive. Suppose y € TC(z), and z € y.
By definition, y € x,, for some n € w. But then z € x,1; therefore, TC(x) is
transitive.

Now, if x C y and y is transitive, we will show that TC(z) C y. It suffices
to show that x,, C y for all n, which we show by induction. The base case holds
by assumption. For the inductive case, suppose z,, C y. Then if z € x,, 11, by
definition, z € 2’ € z,, for some 2’; but then, since z,, C y and y is transitive,
zZ €Y. ]
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Lemma 7.4 (Regularity for classes).

Jr.p(r) = Fo.(p(2) AVy(ply) = y &)
Proof. Suppose ¢ is some predicate, and that ¢(u) holds. Then define
z={z|xeTCu)Ap(z)}.

If z is empty, then u is €-minimal for . Otherwise, note that z is a set by
comprehension, so by Reg, it has an €-minimal element, call it y. Then y is
€-minimal for ¢. For if ¢ € y and ¢(q), then ¢ € TC(u) by transitivity of
TC(u), and hence ¢ € z. But this contradicts the minimality of y. B4

Definition 7.5. Recall the definition of the transfinite hierarchy of sets, V:

Vo=10
Va+1 = P(Va)
Va=J Ve
a<

We write V(z) if and only if there is some « for which x € V.

Definition 7.6 (Rank). The rank of a set z, denoted rank(z), is the least o
for which = € V1.

Theorem 7.7. Under ZFC, the transfinite hierarchy of sets contains all sets.
Formally,
ZFC FVz.V(x).

Proof. Suppose there is some set « for which =V (z). Let u be the €-minimal
such set (by Regularity). Then for every w € u, there is some « for which w €
Va. Therefore, rank is a functional relation on u. Now consider sup(rank[u]) =
B; we claim that v C Vgi;. Consider € u; by definition, § > rank(z), so
x € V41, since the V,, are cumulative. Therefore u C V41, a contradiction. &

Remark. This shows that every class which is bounded in rank is a set. Con-
versely, every class which is not bounded in rank is not a set.
We will now start in on proving some relative consistency results.

Theorem 7.8. If ZF without Regularity is consistent, then so is ZF.

Remark. We will show this by proving that from ZF without Regularity, we can
prove the “relativization” of the ZF axioms to V.

Definition 7.9. The relativization of a formula ¢ to V, denoted ¢V, is defined
as follows. All atomic formulas (€, =) translate to themselves. (—)" commutes
past A, V, and —. The only interesting cases are V and 3:

[Fz.¢]V =32V (z) A"

V.oV =Vz.V(z) = Y

29



That is, we change quantifiers into “bounded quantifiers” which have a universe
of V.
(ZF)V indicates the set of axioms of ZF, each relativized to V.

Definition 7.10. Ay is the smallest set of formulas containing atoms (x € y or
x = y) and closed under connectives and bounded quantifiers (e.g. Vo € z.¢).

Definition 7.11. ¢ is absolute for M iff for all T € M,
(@) = o@).
Remark. As usual, we take T € M to indicate a sequence of elements of M.

Lemma 7.12. If M is transitive and ¢ is Ay, then ¢ is absolute for M.

Proof. By structural induction on . First, if ¢ is an atom, then o™ (Z) = ¢(Z).
If the top-level constructor of ¢ is A, V, or =, the result follows immediately by
definition of relativization and the induction hypothesis.

Now suppose ¢ is of the form Iz € a.¢’, that is, Jz.x € a A ¢'. By the
induction hypothesis, we know that ¢’ is absolute for M. Note that

oM =3z Mz)ANz €an ™.

[¢M(Z) = ¢(Z).] Let T € M, and suppose ¢ (T); we wish to show that
©(T). Let y be the set that witnesses ¢ (Z). Then we can show that y also
witnesses ¢(Z). We know that y € a from ™ (Z). However, ¢’ may contain
x free; we must show ¢'(Z,y). This follows from the induction hypothesis if
y € M: but oM (T) gives us M(y).

[o(@) = ¢M(Z).] Now suppose ¢(T), and let y be the witness. y is also
a witness of M (Z); the argument is similar, except we also need to show that
M (y) holds. We know that y € a; but a is free in ¢, so in ¢(Z) it has been
replaced by some element of Z, which is in M by assumption. M is transitive,
so this implies that y € M as well.

Finally, suppose ¢ is of the form Vx € a.y¢’, that is, Vx.z € a = ¢’. Then
we have

oM =Vo.M(z) =z €a= ™.

[¢M(Z) = ¢().] Omitted. (For now. Maybe.) &
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Lecture 10: A Digression on Absoluteness
February 18, 2009

8 A digression

Remark. An example of a formula which is not Ay is the formula ¢(x) which
states card(x) = w, that is,

Af(f 1w - 2). (1)

Note that 3f is an unbounded quantifier.

Moreover, it is the case that ¢ is not absolute for transitive universes, demon-
strating (by Lemma 7.12) that it is not possible to find any Ag formula express-
ing the same property. We will spend the rest of the lecture exploring why.

Definition 8.1. B is an elementary substructure (or elementary submodel) of
A, denoted B < A, iff for all formulas ¢(Z) and b € B,

B Eplt] <= Al o[b].

Definition 8.2. A and B are elementarily equivalent, denoted A = B, iff for
all p,

AEyp < Bl

Remark. For example, consider the structures A = (w, <) and B = (w — {0}, <).
These are isomorphic, and therefore A = B. However, it is not the case that
B < A: for example, if ¢(z) denotes “z has no predecessor,” then B = (1)
but A ¥~ ¢(1). (Also, A £ B since A is not a subset of B.)

Lemma 8.3 (Mostowski’s Collapsing Lemma). If A = (A, E4) is a well-
founded extensional model of ZF, then A is isomorphic to a transitive set.

Proof. Suppose <A,EA> is a well-founded, extensional model of ZF. Then
define f: A — V by
fla)={f(0) | E*(b,a)}.

(Note that we may recursively define f in this way since <A,EA> is well-
founded.) Then we must show that f[A] is transitive, and that f is an iso-
morphism.

First, we show that f[A] is transitive. Let © € y € f[A]. Then y = f(a) for
some a € A, and y = { f(b) | EA(b,a)}. Therefore, z = f(b) for some b with
EA(b,a), which means that = € f[A].

Now, we must show f is an isomorphism between A and f[A]. Clearly it is
surjective, so we need only show it is structure-preserving. Suppose E4(b, a);
then f(b) € f(a) by definition of f(a). e
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Remark. We interrupt this lecture to bring you the following digression within
a digression.

Remark. In the statement of Lemma 8.3, why do we need to state that
A is a well-founded model of ZF? Doesn’t this follow from the axiom of
regularity and the fact that it is a model?

The somewhat surprising answer is: no! “Just because A thinks it is
well-founded. . .” In fact, we can actually show the following theorem.

Theorem 8.4. If A is an infinite structure with arbitrarily long finite
chains, then there exists a non-well-founded structure B such that B = A.

To prove this theorem, we first need a few more tools.

Theorem 8.5 (Compactness of first-order logic (Godel)). For any set
of first-order sentences T, if every finite S C T is satisfiable, then T is
satisfiable.

Remark. Godel first showed this as a corollary to his completeness theorem
for first-order logic.

Theorem 8.6 (Completeness of first-order logic (Godel)). For every for-
mula ¢ of first-order logic, if T = @, then T I .

Proof. We prove that Theorem 8.5 is a corollary to Theorem 8.6, by show-
ing the contrapositive. Suppose that T is not satisfiable. Then T = @A—p,
vacuously; so, by Theorem 8.6, T+ ¢ A =p. Proofs must be finite, so the
proof must use only a finite set S of formulas in 7. Hence S F ¢ A ¢,
and by the soundness of first-order logic, S |= ¢ A —p. Therefore S is not
satisfiable. &4

Remark. There are actually at least three other ways to show Theorem 8.5.
One was shown by some guy using structures with constants, or something
like that. One was shown by some other guy using ultraproducts, what-
ever those are (we might see this later in the course). Finally, there are
topological methods involving scary things named for people.

Proof. We are now in a position to prove Theorem 8.4. Suppose A is a
structure with arbitrarily long chains. Now define

T =Th(A)U{E(cht1,cn) | nEw},

where F is the relation of A, the ¢; are new constant symbols, and Th(A) =
{¢| A ¢} Since A contains arbitrarily long finite chains, any finite
subset of T is satisfiable by assigning appropriate elements of A to the ¢;.
By Theorem 8.5, T is satisfiable, that is, there exists a structure B such
that B = T. Clearly, B cannot be well-founded, because it contains an
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infinite decreasing chain. Note that A = ¢ = B = ¢ by construction.
The converse is also true, which we can show by contradiction: if B = ¢
but A [~ ¢, then A = —¢, implying that B = —p, a contradiction. Thus,
A=B. =

Remark. This means that ZF—even with the Axiom of Regularity—has
non-well-founded models! Note, however, that any infinitely descending
chain in such a model is not represented by an element in the universe.

Consider also the naturals with addition, multiplication, successor, and
zero, ordered by <, which is a well-founded relation. The preceding the-
orem shows that there are models of these axioms which are not well-
founded! Such a model has “non-standard naturals”; each of these have
successors and predecessors which are also non-standard, so each “sprouts”
a “Z-chain”. Similarly, each of the elements in a Z-chain is a + n for some
standard n, a + a must sprout a different Z-chain, and so on...

Remark. And now, back to your regularly scheduled digression.

Theorem 8.7 (Léwenheim-Skolem). If A = (A, E?) is a structure (that is, a
set with a binary relation) such that A |= T, then for all countable X C A, there
18 some countably infinite B with X C B C A, and B < A.

Proof. (Deferred to a later lecture.) &

Remark. With the machinery we have now developed, we can show that equa-
tion (1) is not absolute for all transitive universes—that is, it could be true in
some universe, but not true in some relativization of that universe which is still
a model.

Theorem 8.8. There is some transitive universe M for which

o(x) zﬂf.(f:wiw:)

onto
is not absolute.

Proof. Let (A, E) be a well-founded, extensional model of ZF. By Léwenheim-
Skolem, we can find a countable model of ZF, B, which is an elementary sub-
model of A (and hence well-founded and extensional). Then, by Mostowski, B
is isomorphic to a transitive set C. Since C' is a model of ZF, it must contain
some element z satisfying the formula “z = P(w)”, and it must be the case that

Ckﬂﬂf.(f:wi%:x)

(this is just Cantor’s Theorem). But C' is countable, and since C is transitive, z
must be countable also. Hence, “countableness” is not an absolute property. &

Remark. This is known as Skolem’s Paradox, and gives additional insight into
the limits of first-order logic to express properties of sets.
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Lecture 11: The Lowenheim-Skolem Theorem
February 23, 2009

Remark. We now return to prove the Lowenheim-Skolem theorem from the
previous lecture. In fact, we will prove a slightly more general version. But
first, we need a lemma.

Lemma 8.9 (Tarski-Vaught =-criterion). If B C A, and for all b € B and

formulas ©(T,y), A & 3x.p[b] implies that there is a b’ € B such that A |=
[b,b'], then B =< A.

Proof. We show that

B ¢lb] <= Al olb]
for all formulas ¢ by induction on the structure of . Without loss of generality,
we may assume that ¢ does not contain V (we can always translate V into —=3-).

e If  is an atom, this follows from the definition of C on structures.

o If ¢ = ¢1 A g, by the inductive hypothesis we know that B | ¢;[b] <=
A |= p;[b] for i = 1,2. Then it is not hard to see that B satisfies (1 A

©2)[b] = p1[b] A p2[b] if and only if A does.

e The arguments for V and — are similar.

e If o = Jy.0. First, suppose B |= Jy.0[b], and b’ € B witnesses this. Then
B = 0[b,b'], which by the inductive hypothesis implies that A | 6[b, V'],

and hence that A = Jy.0[b].

Conversely, suppose A = Jy.0[b]. By assumption, there is a b’ € B for
which A |= 0[b,0']. But by the induction hypothesis, this shows that
B = b, V'] and hence that B | Jy.0[b).

&

Definition 8.10. Let A be a structure and ¢(Z,y) some formula. Then we
may define a Skolem function f, for which

A Trefe,r] = AE ¢ [ ().
The Skolem function f, picks a satisfier for the formula ¢, assuming one exists.

Theorem 8.11 (Léwenheim-Skolem). If A = <A, EA> is a structure (that is, a
set with a binary relation) such that A |=T, then for all X C A, there is some
B such that X C BC A, B < A, and card(B) = Rg - card(X).

Proof. First, form a set of Skolem functions

F={felpeT}
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We note that F' is countable, since T is (we assume a countable language). We
define X, the Skolem hull of X in A, as follows:

Xo=X
Xi+1:{f(6)|E€Xi andeF}

X, =J X

1EW

In fact, X, is the desired B. That X, < T follows by construction from
the Tarski-Vaught criterion. Clearly X C X, C A. Also, card(X,) > Ny,
since it must satisfy all statements of the form “at least n elements exist”;

card(X,) < Vg - card(X), since it is a countable union of sets with size at most
Ng - card(X). ]

Remark. We now note that the Lowenheim-Skolem Theorem is one half of a
more general observation about the sizes of models.

Theorem 8.12. For any infinite structure A and cardinal k > Rq, there is a
structure B such that B = A and card(B) = k.

Proof. Suppose card(A) = A. If k < A, by Theorem 8.11 we can find some
B < A with card(B) = k, by forming the Skolem hull of some subset of A of
cardinality r; this implies that B = A.

Conversely, suppose £ > A. Let {C, | @ < K} be a set of new constant
symbols. Now consider the set of formulas

T'=Th(A)U{~(Co =Cp) |la< B <k}

Any finite subset of T" is satisfiable by A; hence, by compactness (Theorem 8.5),
T’ is satisfiable by some structure, call it B’. The cardinality of B’ must be at
least k. Also, B’ = A (with respect to the language without the extra constants
Cy), and by Theorem 8.11 we may construct a B < B’ with cardinality x, and
B=A. B4

Remark. For every finite A, on the other hand, there exists some ¢4 such that
B = paifand only if B = A. That is, every finite structure can be characterized
up to isomorphism in first-order logic. We can simply take ¢4 to be a complete
encoding of the relation on A.

Definition 8.13. A theory T is k-categorical iff for all A and B, if card(A) =
card(B) =k and A =T and B ET, then A = B.

Remark. In other words, T is k-categorical if it characterizes its models of
cardinality x up to isomorphism.

For example, Th(Q, <) is Rg-categorical, but not 2%°-categorical, which we
saw in a previous lecture.

There exist T which are not Ng-categorical but are k-categorical for every
k > Ng. There are also trivial examples of T" which are x-categorical for all x
(for example, a set with the empty relation or total relation).
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One might wonder whether there are T" which are Wj-categorical but not
Ns-categorical. The answer, as shown by M. Morley in the 1960’s, is no.

Theorem 8.14 (Morley, 1967). If T is a complete, countable first-order theory,
and T is k-categorical for some k > N, then T is k-categorical for all kK > V.

Remark. One might also wonder whether there is some countable structure A
such that the second-order theory of A is not categorical? This question was
shown by Ajtai to be independent of ZFC.
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Lecture 12: Relative Consistency 11
February 25, 2009

9 Relative consistency of Reg

We now finally return to prove Theorem 7.8:

Theorem 7.8. If ZF without Regularity is consistent, then so is ZF.
We'll first need a few more lemmas.

Lemma 9.1. The rank hierarchy V' (Definition 7.5) is transitive.

Proof. By definition of V, it suffices to show that V,, is transitive for all ordinals
«, which we show by transfinite induction.

e 1y = 0, which is vacuously transitive.

e By definition, V1 = P(V,); by the inductive hypothesis we may assume
V, is transitive. Let x € V,11. Then x C V,,. Now let y € x; then y € V.
But since V,, is transitive, this means that y C V,,, and hence y € V4.

e Now consider V), = Uﬁ</\ V3, where A is a limit ordinal. Let € V. Then
x € Vg for some 3 < A. Since Vj is transitive by the inductive hypothesis,
if y € x, then y € V3, and hence y € V). ]

Remark. This immediately implies that the rank hierarchy is cumulative: V,, €
P(Vy) = Vi1, and since V,, 41 is transitive, V,, C V11 as well.

Lemma 9.2. If all the elements of a set u are sets in the rank hierarchy, then
50 s U.

Proof. Let a be the maximum rank of the elements of u; since the rank hierarchy
is cumulative, u C V,,. But then v € V4. 9

Lemma 9.3. If © is in the rank hierarchy, so is P(x).

Proof. Suppose x € V. Therefore x C V, since V is transitive. Then by the
previous lemma, every subset of x is in V. Applying the previous lemma again,
we conclude that P(x) € V. &

Proof of Theorem 7.8. We must show that if we assume ZF - Reg, each of the
axioms of ZF holds when relativized to V.

e Axiom of Extensionality. We must show

VaVy(Vzexzey A(Vzeyze)) = (z= y)]v
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By definition of (—)Y, this is equivalent to

VeeVVyeV.[(Vzeazzey) A(Vzeyzen) = (z = y)]v

(where V& € V.p is an abbreviation for V2.V (x) = ¢). Let € V and
y € V; then we must show the remainder of the formula for this particular
x and y. However, note that this formula is Ay and its free variables are
in V' (which is transitive), so by Lemma 7.12, its relativization holds iff
the unrelativized version holds in the original universe—which is does, by
the Axiom of Extensionality.

Pairing. We must show
Vo.Vy.dzVw.(w ez & (w=aVw= y))]v,
that is,
VeeVVyeVIzeVVweV(vwez e (w=zVw=y)).

So, let x,y € V, and let z = {z,y}, which is guaranteed to exist by the
Axiom of Pairing. Note that z € V| since its elements are (by Lemma 9.2).
The remaining condition holds for all sets w by the Axiom of Pairing, so
it certainly holds for all sets w € V.

Union. We must show
Vo.3yVzzeye Quwenze w)]v,

that is,

VeeVIyeVvzeVizeys Guerzew)’,

noting that the part still in brackets is Ag. Let z € V, and let y = Jx
(which exists by the Axiom of Union). y € V, again by Lemma 9.2.
Finally, the formula in brackets holds for all sets z, so the relativized
version certainly holds for all z € V, since it is Ay.

Power set. We must show
Vo.3yVz.z ey e (Vw e zw e x)]v,
that is,
VeeVIiyeVVzeV.|zeye (Ywezw Gx)]v

Let © € V, and let y = P(x). By Lemma 9.3, y € V. The remainder of
the argument is similar to the previous case.
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e Infinity. We must show

[FzdecaA(VyecazyU{y}e m)}v,

that is,

JrxeV lexn(VyecazyU{y}e x)]v
Note that the formula inside the brackets can be expressed as a A formula.
Let x = w, and note that it satisfies the Axiom of Infinity, and is in V' (in
particular, it is in V,,41). Then we are done, since the remainder of the
formula is Ag.

e Regularity. We must show
Vo.(dyez)=>ycavVzeyzd x]v

(without using the Axiom of Regularity!). All but the Vz. is clearly Ap.
So let € V, and suppose z is not empty. Pick y of minimal rank in x.
Then y Nz = (), since otherwise there would be some element of z which
is also an element of y, contradicting the minimality of the rank of y.

e Separation. We must show that for all formulas ¢,
[VEVz.IyVzz €y & 2 € x A p(z,1)] V,
that is,
VicVVzeViyeVzeyozcaAp'(21).

So, let t,2 € V. Then let y = {2z € = | ¢V (z,%)}, which exists by the
Axiom of Separation. But all the elements of y are elements of z € V| and
therefore also elements of V' since V is transitive; but then by Lemma 9.2,
yeV.

e Replacement. We must show that for all F',
(F is a functional relation)" = (Va.3y.y = Flz])",
that is, more explicitly,
(Vz.(3y.F (2, y) AN (Vy, y F (2, y)AF(2,9) = y = y)))" = (Va3y.y = Flz])".

So, we are given the fact that F'V is a functional relation when restricted
to V, and that it sends every element of V' to another element of V. Let
x € V. Now, invoking the Axiom of Replacement, we may conclude that
the image of  under IV | V is a set. However, since all the elements of
x are elements of V' (since V is transitive), this image is a set of elements
of V, and hence in V. Furthermore, this image y should satisfy

(y = Fla])",

that is,

(Vz.(z €y & Fw € v.F(w, 2)))",

but this is clearly satisfied by the image of z under FV | V.
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e Choice. We must show that
Vz.(Vy € 3.y # 0) = 3f. dom(f) =z AVy € z.f(y) € y]v,
that is,
VeeV.Vyezy#0)=3f € V.dom(f) =z AVy € z.f(y) € y.

So, suppose x € V and all the elements of z are nonempty. Then by the
Axiom of Choice, there exists a choice function f in the universe which
clearly satisfies the necessary conditions on f. Also, f consists of pairs
of elements of x and elements of elements of x, all of which are in V' by
transitivity; since V' contains pairs by construction, f € V. B4
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Lecture 13: Strongly Inaccessible Cardinals
March 2, 2009

10 Strongly inaccessible cardinals and ZF

Recall the definition of a strongly inaccessible cardinal.

Definition 10.1. & is strongly inaccessible (SI) iff k is regular and « is a strong
limit (that is, 2* < & for every A < k). (We can also place the restriction that
Kk > w, since w would not make a very interesting strongly inaccessible cardinal.)

Lemma 10.2. If k is a strongly inaccessible cardinal, then for every 0 < k,
card(Vp) < k.

Proof. By induction on 8. The base case (5 = 0) is obvious.

Suppose 8 = a + 1, and by the inductive hypothesis card(V,) < . Then
card(Vg) = 2card(Va) < since & is a strong limit ordinal.

Now suppose [ is a limit ordinal, and by the inductive hypothesis card(V,,) <
k for every a < 8. Then card(Vjs) = sup, 4 card(V,), since the V,, are mono-
tonically increasing. If this is equal to k, then a — card(V,,) is a cofinal map
(8 — k—but this is a contradiction, since § < x and « is regular. 4

Theorem 10.3. If k is a strongly inaccessible cardinal, then V,, = ZF.

Proof. Since k is a limit ordinal greater than w, it is easy to see that V, = Z
(that is, ZF without the Axiom of Replacement). So it only remains to show
that V,; = Replacement.

Let F be a functional relation, and let € V. Then we wish to show that
Flz] € V,. First, note that since « is a limit ordinal, x € Vj for some 8 < k.
Then since V3 is transitive, z C V3 and hence card(z) < card(V3) < k by
Lemma 10.2.

Now let v = sup{rank(F(y)) | y € = }. Hence F[z] € V41, so it remains
only to show that v < k. But if v = &, then y — rank(F(y)) would be a cofinal
map from z to k, a contradiction since card(z) < k. ]

Theorem 10.4. ZF ¥ 3k.5I(k).

Remark. We can show this using Godel’s second incompleteness theorem: sup-
pose ZF' could show the existence of a strongly inaccessible cardinal. Then by
Theorem 10.3, we could derive ZF + 3k.V, = ZF. But by the completeness
theorem of first-order logic, this amounts to a proof of ZF’s consistency within
ZF, contradicting Godel’s second incompleteness theorem.

This proof is pithy but not very illuminating. We can actually give a more
elementary proof that does not rely on any incompleteness theorems. First,
we’ll need a lemma about strong inaccessibility.
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Lemma 10.5 (Absoluteness of ST). If A is a limit ordinal and k € V), then
SI(k) < V) E SI(k).

Proof. Unfolding the definition of S1, it suffices to show each of the following.

e ord(k) < V) E ord(k). Since we have the Axiom of Regularity, ord(x)
simply reduces to the statement that x is a transitive linear order, both
of which are Ay conditions.

o card(k) <= V) = card(k). Recall that card(x) holds iff there is no f for

which there exists some 3 < k such that f : 3 % K.
onto

First, suppose card(k), that is, there is no bijection in the universe between
k and some ( < k. If there is no such bijection in the universe, there isn’t
one in V), either, since the notion of being a bijection between § and k is
Ag.

Now, suppose V) | card(x), and suppose by way of contradiction that
there is some f in the universe which is a bijection between x and some
B < k. Note that f C 8 x k C P(P(8Uk)), so its rank is at most two
greater than the rank of k. But x € V), and since A is a limit ordinal,
Kk € V, for some a < A, and hence f € V12 C V), which is a contradiction.

o cf(k) =k < V) = cf(k) = k. We can also restate cf(k) = & as the
fact that there is no ordinal a < & for which there exists a cofinal map
fra— k.

(=) Suppose there is no ordinal & < & in the universe for which there
exists a cofinal map f : @« — k. Then there is no such ordinal in V), either,
since the notion of being a cofinal map from « — & is absolute for V) (this
is because a, k € V); the notion of being a functional relation from « to k
is absolute for V) ; and the predicate defining what it means to be a cofinal
map only has to talk about union, which lowers rank).

(«<=) Suppose that V) |= cf(k) = &, and suppose by way of contradiction
that there is some o < k and a cofinal map f: a — k. Clearly a € V). It
is also easy to see that f € V) by the same argument as in the previous
case.

e r is a strong limit cardinal <= V) | k is a strong limit cardinal.

First, suppose k is a strong limit cardinal. This means that 2* < x for

every cardinal ¢ < k, which is the case if and only if, for every ¢ < k, there

is an injection f : P(¢) Lk By the usual rank argument, f € V).

Now suppose V) = (k is a strong limit cardinal), which means that for

every cardinal ¢ < k, there is some f € V) such that f: P(v) L k. But
then for each ¢, that f is evidence in the universe that 2* < x; hence & is
a strong limit cardinal.
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e k is uncountable <= V) |= & is uncountable.
First, suppose x is uncountable; then there does not exist any function

f: K L1, . Then in particular, there does not exist any such function in

V), since being an injection from x into w is absolute for V).

Now, suppose V) |= k is uncountable. By way of contradiction, suppose

there is some f in the universe with f : & oo By an easy rank
argument (noting that x uncountable implies A > w), f € Vj.

&

Proof of Theorem 10.4. Suppose that ZF can show the existence of a strongly
inaccessible cardinal. Then there must be a smallest such cardinal A, that is,

ZF F3N(SI(A) Ay < A~SI(v)).

So Vo = ZF, and in particular, it must be the case that V) | Jx.SI(k).
So, there must be some £ < A for which V) = SI(x). However, we know by
Lemma 10.5 that ST is absolute for V), so SI(k), contradicting the fact that A
is the smallest such cardinal. &
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Lecture 14: Midterm exam review
March 16, 2009

11 Midterm exam review

Theorem 11.1 (Problem 6). For all ordinals o and 3, if & < 3 and V, = V3,
then Vo = ZF.

Proof. First, we note that if w < « and lim(«), then V, | Z (ZF without
Replacement).

We can also easily show that a must be a limit ordinal greater than w. First,
if @ =~ +1, then v € V,, but {7} ¢ V,. However, since a < 3, v and {7} are
both elements of Vj; this is a contradiction since V, =< Vj, and in particular
must satisfy the formula stating that {y} exists. Second, if @ = w, then V3
satisfies the Axiom of Infinity but V,, does not, another contradiction.

So, it remains only to show that if o is a limit ordinal greater than w,
o < 3, and V,, = Vs, then V, satisfies Replacement. Suppose f is a functional
relation in V,, and z € V,,. Then for every y € z, f(y) € Va, and therefore
f12] € Vax1 C V3. But then V,, must satisfy the formula stating that the image
of z under f is a set. =

Remark. As an aside, we can also show that the « in the above theorem must
actually be a strong limit cardinal; left as an exercise.

Remark. There was other stuff in this lecture having to do with more specific
points from the exam. We also started into discussing problem 3, which is to
show that ZF has no finite axiomatization. See the next lecture notes for the
beginning of this.
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Lecture 15: The Reflection Principle
March 18, 2009

12 ZF is not finitely axiomatizable

Definition 12.1. A sequence of sets indexed by ordinals, M,,, is a cumulative
hierarchy iff

1. My € Myy1 CP(M,), for all «, and
2. Uper Mo = My, for im(A).

Remark. For example, V' (the rank hierarchy) is a cumulative hierarchy, as is L
(the constructible hierarchy, to be covered later). Generally, if the sequence M,
is a cumulative hierarchy, we write M (z) to denote the predicate Ja.z € M,.

Definition 12.2. A class of ordinals C is closed unbounded (abbreviated club)
iff

e it is closed, that is, C(\) holds for limit ordinals A whenever, for every
B < A, there is some 8 < v < A with C(v); and

e it is unbounded, that is, for every ordinal « there exists some ordinal § > «

with C(5).
Remark. A set of ordinals is club iff it is the image of a normal function.
Lemma 12.3. If C and D are closed unbounded, then so is C' N D.
Proof. We must show that C'N D is closed, and unbounded.

e CND is closed. Let A be a limit ordinal, and suppose that for every 8 < A
there is some 8 < v < A with C(v) and D(v). Then A € C' and A € D,
hence A € C'N D.

e CND is unbounded. Let § be an ordinal, and define a sequence {(«;) such
that 8 < ap < a1 < ... and ag; € C, agy1 € D. We can construct such
a sequence since C' and D are unbounded. The sup of this sequence is
larger than 3, and in both C and D. =

Lemma 12.4. For any map F' which sends ordinals to ordinals, the class
C={a|V8B<a=FpB)<a}
is closed unbounded.

Remark. This seems quite magical! It is not even obvious that C should be
nonempty. In some sense it asserts that infinitely many “strong limits” exist
with respect to any map F', not just a +— 2.
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Proof. We must show that C' is closed, and that it is unbounded.

e (' is closed. Suppose lim(\) and there is some increasing sequence & below
A contained in C. Pick any 8 < A. Then since £ is increasing, and A is a
limit ordinal, there must be some 3 < a < A with « € &, that is, o € C.
But then F(8) < a < A, s0 A e C.

e (' is unbounded. Suppose 7 is an ordinal; we wish to show there is some
0>~ with 6 € C.

Define
Yo =7
Vi1 =1+ sup {F(a)}
a<Yn
0 = sup{yn}-
necw

Now pick 3 < §; we wish to show that F(3) < §, from which it will follow
that § € C. By definition of §, there is some n for which 8 < ~,. But
then F'(3) < sup, ., {F(a)} <ynt1 < 9. ]

Theorem 12.5 (Reflection principle). For every cumulative hierarchy M and
formula p(x1,...,x,), there is a closed unbounded class C of ordinals such that
for every a € C,

VT € M,.pMe(7) & oM (7).

Remark. If M =V, oM = oV = ¢ under Regularity; hence every formula ¢ is
reflected by some closed unbounded class of ranks.

Definition 12.6. A theory T is reflexive if T + Con(yp) for every ¢ € Conseq(T)
(where Con denotes “is consistent” and Conseq(T) denotes the set of all for-
mulas derivable in T').

Remark. By Godel’s second incompleteness theorem, a reflexive theory (which
is strong enough for the theorem to apply) can’t be finitely axiomatizable. If it
were, there would be some formula (the conjunction of the axioms) from which
the entire theory would follow; but since the theory is reflexive it would then be
able to prove its own consistency.

Moreover, the reflection principle implies that ZF is reflexive, and hence is
not finitely axiomatizable. However, we will later give a more set-theoretic proof
of this using the reflection principle, without appealing to Godel.

Proof of Theorem 12.5. By induction on . (We may assume that V and V are
encoded in terms of 3, =, and A.)

e If ¢ is an atomic formula (z1 € x2 or 1 = x2) we may take C to be the
class of all ordinals. (Relativization is the identity on atomic formulas.)
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e o = —f. By the inductive hypothesis, there is a club class Cy correspond-
ing to 6; we may take C, = Cp, since the condition for ¢ is equivalent to
the condition for 6.

o o =0AY. If Cy and Cy are the club classes from the inductive hypotheses,
then C, = Cy N Cy (which is club by Lemma 12.3) reflects ¢, since if
oMo = M and Mo < M both hold, then so does M A pMe &
M A pM | which is equivalent to (6 A )M & (6 A )M,

o © =3y.((T,y); let C¢ reflect ((Z,y) by the inductive hypothesis.

Now define G(T) to be the least a such that there is some y € M, with
¢M(Z,y), or 0 if there is no such «. In other words, for a given Z, G(Z) is
the smallest rank that reflects ¢ for that particular z.

Furthermore, define
F(B) =sup{G(T) [T € Mg }.

Now, we claim that C, = CeN{ o | lim(a) }N{a |VB.0 < a = F(f) <a}
satisfies the requirements of the reflection principle. Note that C, is club
by Lemmas 12.3 and 12.4.

It remains only to show that C, reflects ¢, that is, for every a € Cy,
VT € Mo (3@, )" & CyL(@, )"

So, suppose a € Cy, and T € M,

(=) We are given (Jy.((7, y))Me, that is, there is some y € M, such that
(Mea(z,y) holds. Clearly y, € M, and since o € C¢, we conclude that
(M (z,y) holds as well.

(<) We have (3y.¢(T,y))™, that is, there is some y € M such that
¢M(z,y); we wish to show that there is some 3’ € M,, such that (M= (7, /).

Since a € C,, it is a limit ordinal, and therefore there is some 3 < a with
T € Mp (this follows from the definition of a cumulative hierarchy and
the fact that T is finite). Furthermore, G(Z) < F(8) < a. The existence
of y implies that G(Z) # 0, so there is some y' € Mgz C M, such that
¢(M(z,y') holds. Since a € C¢, this implies that (= (Z,y’) holds as well.

&

Theorem 12.7. There is no formula ¢ such that Z+y is consistent and extends
ZF.

Remark. 7 here indicates ZF without Replacement; the above theorem shows
that the infinite axiom schema of Replacement cannot be replaced by a finite
one.
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Proof. If Z + ¢ extends ZF, then it derives the Reflection Principle, and in
particular there is some least rank « that reflects ¢ and is a limit ordinal greater
than w (every club class contains arbitrarily large limit ordinals). That is,

Z+ ok 3alim(a) Aw < aAp” A (VB < a.=(p"? Alim(B) Aw < B)).

But recall that V,, is a model of Z for every limit ordinal « greater than w, so
if v is the least a whose existence is proven above, then

V, E Ja.lim(a) Aw < a A pVe.

But this is a contradiction, since all the involved notions are absolute for V.,
and so any element of V, satisfying the above would contradict the minimality
of v. However, to see the absoluteness of the above predicates will require some
additional technical tools. To be continued. (Maybe.)

&
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Lecture 16: The Constructible Hierarchy
March 23, 2009

13 The Constructible Hierarchy

Remark. We now return to Goédel’s Constructible Hierarchy, L. Ultimately, we
will show that
ZF v ZF" + ACY + GCH*"

(where here “ZF” does not include the Axiom of Choice), thus proving the
consistency of AC and GCH relative to that of ZF.

Definition 13.1. We define the constructible hierarchy L as follows:

Intuitively, Def(X) is the collection of sets definable in (X, €) with param-
eters from X. But we will take some care to nail this down more rigorously.

Remark. We assume that our formal language has variables v;, ¢ € w, and the
usual connectives (=, €, V, =, 3). We now define a formal coding of formulas
as sets (A “Godel-setting” scheme, if you will.)

Definition 13.2. We define a “function” Code sending formulas to sets. (Note
it is only a function in a metaphorical sense, not a set-theoretic one, and is used
only for convenience of notation.)

Code(v; = vj) = (0,1, 7)

Code(v; € vj) = (1,4,7)
Code(p V1) = (2,Code(p), Code(v)))
Code(—p) = (3,Code(p))
=

Code(Fv;.0) = (4,4, Code(p)) .

Definition 13.3. We now define a relation F'm, which relates coded formulas
u to their construction depth n and a sequence s of their subformulas.
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Fm(u,n,s) =n €wA Fn(s) Adom(s) =n+1As(n) =u
AVE < n.

(Eli,j < w.s(k) = Code(v; = vj)
V 3i,j < w.s(k) = Code(v; € vj)
Vv al,m < k.s(k) = (2,s(l),s(m))
V3l < k.s(k) = (3,s(1))

VIl <kJi<w.s(k) = (4,i,s(l)>)

Note that Fn(x) is a predicate stating that x is a function. Then we also
define Fm(u) £ 3n.3s.Fm(u,n,s).

Remark. Finally, we define a satisfaction relation on formulas with respect to a
set X. The idea is that if s; is a coding for some subformula of u, then b; will be
the set of satisfiers of s;, that is, the set of functions that assign free variables
in s; to elements of X in such a way that s; is satisfied.

We want to be able to bound the domain of the satisfiers in b;, but we can’t
just a priori pick some arbitrary limit. However, given a coding of a formula u,
we know that the rank of u (denoted p(u) in what follows) will be big enough,
since it is certainly an upper bound on the indices of the free variables occuring
in u (since each is embedded as an ordinal somewhere in u).

Definition 13.4. We define the relation Sat’ on sets X, coded formulas u, and
sequences of sets of satisfiers b as follows:

Sat'(X,u,b) = In.Is.Fm(u,n,s) A Fn(b) Adom(b) =n + 1
Arng(b) C PW X
AVE <n+1.

((Hi,j < p(u).s(k) = Code(v; = v;) AVt € b(k).t(i) = t(j))

V (3,7 < p(u).s(k) = Code(v; € v;) AVt € b(k).t(i) € t(5))
Vv (3l,m < k.s(k) = (2,s(1),s(m)) Ab(k) = b(l) Ub(m))
V (3l < k.s(k) = (3,s5()) Ab(k) =P X — (1))

V (3l < k.3i < p(w).s(k) = (4,4,50)) Ab(k) = {t | 3a € X.t[i — a] € b(l) }))

where t[i — a] =t — {(;,t(4)) } U {(i,a)}.
Definition 13.5. We can now define Sat as follows:

Sat(X,u,t) £ Ib.3n € w.Sat'(X,u,b) At € b(n) Adom(b) =n + 1.
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Definition 13.6. We define the notions of ¥, II;, and A;-T formulas as fol-
lows:

e A formula ¢ is ¥; if there is some Ay formula 1 such that ¢ = Jz.7.
e A formula ¢ is II; if there is some Ay formula 1) such that ¢ = Vz.1.

e ¢ is Ay-T for some theory T iff there is a ¥; formula ¢ and a II; formula
x such that
TEVZ(p(Z) & x(2) A p(Z) & ¥(2)).

Lemma 13.7. If ¢ is A1-T then @ is absolute for transitive models of T .

Proof. Suppose M C M’ are two transitive models of 7', and we have some
AT formula (z). We wish to show that ™ < oM for all z € M.

(=) Suppose ©M (%) holds. Then since M models T, we have (3z.¢(z, z))M,
that is, there exists 2 € M such that 1(z, z)*. But we know that M is transitive
and ¢ is Ag, so ¢(z,2)™" also holds (and 2 € M’ since M C M’). Therefore,
©M' (%) holds.

(<) Conversely, suppose ¢’ (z) holds. Then we have (Vz.x(z,z))™'). By
a similar argument, since all 2 € M’ are also in M, and x is Ao, (Vo.x(%,2))M
holds, and therefore so does ¢ ().

Remark. Now we can give the sketch of an argument that Sat is A;-ZF. We
first note that Sat is X1 as defined (it needs to be shown that Sat’ is Ag). But
we also note that by the way we constructed Sat’, if some b exists which satisfies
the definition of Sat, it is unique, and so Sat(X,u,t) is equivalent to

Vb.(dom(b) = n + 1 A Sat' (X, u,b) =t € b(n)),

which is II;.
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Lecture 17: The Constructible Hierarchy, Part II
March 25, 2009

Definition 13.8. Following the previous lecture, we can now formally define
Def.

Def(X)={y C X [Fp.fv(p) = {vo,...vn}
A thom(t) = {Uo, .. .’Un_l}
ANy ={ae€ X |Sat(X,p,tU{{vn,a)})}}

Remark. Informally, we can think of this definition as

D(X,y) £ 3p.Jay={aec X |(X,€) F¢la,a}
Def(z) ={y| D(X,y) }.

Definition 13.9. A function F is X iff the relation F(x) =y is X;.
Lemma 13.10. If dom(F) is Ay and F is ¥y, then F is A;.

Proof. Since F is 1, we may suppose that F is given by some formula F(z,y) £

Fz.0(x,y, 2).
Now consider the formula

x(2,9) £ (dom F)(z) A Vw.(3z.0(z,w, 2)) = w = y.

We claim that y is equivalent to F', and that it is II;.

First, suppose F(x,y). Then there is some z for which ¢(x,y,z), and
(dom F')(x) holds by definition. Now suppose there is some w for which 3z.¢(z, w, 2)
holds. Then by definition, we have F(z,w). But since F' is functional, w = y.

Conversely, suppose x(z,y) holds. Then z is in the domain of F, so there
must be some y’ for which F(z,y’). But the second clause of x(z,y) implies
that this ¢y’ must be equal to y; hence F(z,y).

To see that x is Iy, note that dom F' is Iy, and the 3 is on the left-hand side
of an implication. More concretely, supposing that (dom F)(z) £ Vv.¢(v, 1),

x(z,y) <= Yo(v,z) AVw.~(3z.p(z,w,2)) Vw =1y
— Yop(v,z) AVwVz.mp(z,w,z) Vw =y
= YoVw.Vz(v,z) A -z, w,z) Vw =y.
Although this seems as though it has more than one unbounded quantifier, we
could rewrite it as a single universal quantification over an ordered triple (this

is known as “contraction”). Hence, x is II;.
Since F' is X1 and equivalent to a II; formula, it is Aj. [

Remark. We remark that the class of 31 formulas is closed under

e existential quantification,
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e A and V connectives, and
e bounded universal quantification.
The first two properties are obvious; the last is not.
A similar property holds for the class of IT; formulas.

Remark. The discussion of contraction at the end of the above proof shows
that repetitions of the same unbounded quantifier are uninteresting. The above
remark also shown that bounded quantifiers are not interesting. A real increase
in complexity, however, comes from alternating unbounded quantifiers. ¥, is
the class of formulas beginning with 3V; X3 formulas begin with 3v3; and so
on. II,, is similar.

Lemma 13.11. If G is 31 and F is defined by transfinite recursion over G,
then I is Aq.

Proof. Suppose we define F'(«) = G(F | «) by transfinite recursion; formally,
we define

F(a) =X < 3£¥8 € dom(f).f(8) = G(f | B) A f(a) = X.

Note that since G is X1, so is f(8) = G(f | 8) A f(a) = X; hence so is
F(a) = X since the class of ¥; formulas is closed under bounded universal
quantification and existential quantification. Also, the domain of F' is the class
of ordinals, which is A (in fact, it is Ag), so by Lemma 13.10 F' is A;. 4

Theorem 13.12. L is A;.

Proof. L is defined by transfinite recursion over a %; function (it is left as an
exercise to check that Def is Xq). &

Corollary 13.13. L is absolute for transitive models of ZF.

Definition 13.14. The order of a set X, denoted od(X), is the least o such
that X € Lo41. (It is not yet clear that this is well-defined for all sets, although
it turns out that it is.)

Definition 13.15. A class M is almost universal iff for every X C M, then
there is some Y € M for which X C Y.

Lemma 13.16. If M contains On (the class of ordinals) and is transitive and
almost universal, and (Sep)™ (that is, M satisfies the aziom of Separation),
then (ZF)M.

Proof. Deferred to the next lecture. &
Lemma 13.17. L satisfies the conditions of Lemma 13.16.

Proof. We show each of the conditions in turn.
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e [ is tramsitive, that is, L., is transitive for all a. Since a union of transitive
sets is transitive, it suffices to show that Def(X) is transitive if X is.

Suppose X is transitive, and that y € Def(X). Thus y C X. We want
to show that y C Def(X). Suppose z € y, and consider the formula
o(w) =w € z. Then the set {w | (X, €) = ¢(w) } € Def(x); but since X
is transitive, every member of z is a member of X, so this set is equal to
z, and y C Def(X).

e To show that L contains On, we will in fact show the stronger statement
that L, N On = a, for all a. The proof is by induction on «. The base
case is easily verified.

In the limit case, OnNLx = OnNUgy Lg = Uz (OnNLg) =Uz.) B =
A

In the successor case, suppose On N L, = a. Since L is cumulative, we
need only show that o € L,1; to see this, consider the defining formula
On(B) over L. Since On is Ay, it is absolute, so it picks out exactly the
elements of «.

e [ is almost universal. Given Y C L, consider
B =sup{od(z)+1|zeY}.
Then Y C Lg € Lg41.
e [ satisfies Separation. Suppose x € L, and consider the set
s={yex|p"y)}

We must show that s is in L also. Consider 8 = od(x). By the Reflection
Principle, there is some a > ( such that

Vy € La.o"(y) <= o™ (y).

But since every y € z is also in L, this means that s € Ly41; we may
take the defining formula to be ¢(y) Ay € x.

&
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Lecture 18: The Constructible Hierarchy, Part Il
March 30, 2009

Proof of Lemma 13.16. We are given a transitive, almost universal class M
which contains On and satisfies Sep; we wish to show that M satisfies ZF'.

o ExtM since M is transitive.
e RegM since M is a class.

e PairM. Suppose x € M and y € M. By pairing (in the universe) there is
some z = {x,y} C M. Since M is almost universal, there is some u € M
such that z C u. Now consider the set {w € u | w =z Vw = y}. This
set is in M since M satisfies Separation; but this set is precisely the pair
{z,y} in M, since w = Vw =y is Ay.

e Union™. Let M(x). Then by the union axiom, 3Jz.Vz.2 € Jz < Jb €
z.z €D.
Note that y € Jx = y € M, since M is transitive; so by the almost
universality of M, we conclude there is some v € M for which Jz C u.
Now consider the formula ¢(y) = 3b € z.y € b.

Note that Sep™ expands to
Vee M3ye MVze Mzcy s zexhe™(z).

So we may conclude that there is some p € M such that Vz € M.z € p &
z €u N pM(z), that is,

p={zcule"(x)}

We want to show the union axiom relativized to M, that is, 3¢ € M.Vz €
M.z € ¢ & pM(2). We claim that p witnesses this formula. The (=)
direction holds by definition of p. The (<) direction holds since ¢ is Ay,
so M (z) implies ¢(z) (since z € M) and ¢(z) states that z € |Jz; and
Uz Cu.

e Powerset™ . Let M(x). Then by the power set axiom, P(x) exists in the
universe. Note that this may not be the power set of z in M, since M
does not necessarily contain all subsets of x. We want to show that

v={wePa) | Mw)}

is in M. Since M is almost universal, there is some uw € M for which
v C u; then by comprehension in M we may form the set { z € u | z C z };
this set is precisely v (C is Ag).

o Infinity™ . We stipulated that On C M, so in particular we have w € M,
and w is absolute.
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e Replacement™ . Suppose o(z,y) is a functional relation in M, that is,
Vo € M3y € M. A oM (x,y). We wish to show

Yw € M.3u € MVz € w3y € u.p™(z,y).

This is the relativization to M of a weak form of the axiom of replacement.
It shows that w contains the image of w under ¢; we can use separation
to construct the exact image of w under .

Let w € M; the p-image of w exists in the universe, call it v. Then by
almost universality of M, there is some u’ € M for which v C v’; then we
are done. =

Corollary 13.18. ZFL.

Definition 13.19. A model M of ZF is an inner model iff M is a transitive
class containing On.

Remark. We have seen previously that there is a A;-ZF relation C such that
C(a,z) iff © = L,. Hence C(o, x) is absolute for inner models of ZF.

Lemma 13.20. If M is an inner model of ZF, then L™ = L. (Where LM =
{y|Ba,z. Clayz) Ny €)M }.)

Proof. 777 B4
Corollary 13.21. ZF I (V = L)%,

Proof. (V =L)F =(VE=LF)=(L=1). &
Corollary 13.22. L is the smallest inner model of ZF.

Proof. Any inner model M contains LM = L. &

Remark. Recall that we are in the middle of trying to prove
ZF+ ZFt + ACt + GcHY,

by showing that
ZF+ vV =L"+ AC+GCH

and
ZF - ZFF +(V = L)~

We have now shown the second part; it remains only to show that AC' and GCH
hold in ZF + “V = L”.

Theorem 13.23. ZF + (V =L)F AC.

Proof. There is a definable relation <, which is a global well-ordering of L (this
is bizarre). Define <y, o inductively as follows.

e <y is the empty relation.
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e At limit stages, we of course take the union of all previous stages.

e Now we define <r, o1 in terms of < ,. Note that every z € L4 is
a subset of L, defined in terms of some n € w, some §¥ € L, and some
first-order formula . We can order formulas using a Godel numbering.
We can also order tuples lexicographically, so given an ordering of L, we
can order elements of L. We now order L,41 in the obvious way: for
each & € Ly+1, choose (in some canonical order) the least n, least formula
p, and least tuple that define it. Also, we stipulate that everything at
stage o comes before everything first arising at stage a + 1.

We then take x <p y to mean that there exists some a for which = <z, o .
Hence every set in L has a well-ordering, so AC holds. (But moreover, the
entire universe is well-ordered! This gives an intuitive reason to believe that
V = L is not really true in a Platonic sense.) i
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Lecture 19: The Constructible Hierarchy, Part IV
April 1, 2009

Remark. We now proceed to prove the generalized continuum hypothesis under
the assumption that V = L.

Lemma 13.24. For every infinite ordinal o, card(L,) = card(«).

Proof. First, we note that L, = V,,, and card(V,,) = card(w) = w. Also, it is
clear that card(L,) > card(«) since a C L,,.

In the successor case, we want to show that card(L,41) = card(Def(Ly)) =
card(a+1) = card(a). This amounts to showing that Def preserves cardinality.
But every element of Def(L,) is a formula together with some finite number
of witnesses from L, ; hence its size is at most

o x Y (card(La))" = card(La). =

necw

Definition 13.25. o(M) is the least v for which v ¢ M. For transitive M,
o(M) ={y|ve M}

Remark. Recall that the GCH says that 2° = k™ for all infinite k. To show
that it holds in L, we must show that every subset of L, occurs at some level
prior to L.+. If we can show that od(z) < k™ for every z < k, then 27 < kT
(we already know that 2% > kT by Cantor’s Theorem). In particular, we will
show that for every x C L, od(z) < |a|T.

Recall that o — L, is A1-ZF. So there is some sentence 6 for which « — L,
is A1-0, that is, § proves the equivalence of the 31 and II; forms of a — L.
Given this, we can prove the following lemma.

Lemma 13.26. There is a sentence 0 such that ZF+(V = L) F 0 and for every
transitive M,
ME6O = Ja.lim(a) AM = L,.

Proof. Let 9 be the function o — L,. Then ¥ («, ) is absolute for transitive
models of a finite fragment 6’ of ZF. Then let

6=0"N(V=L).

If M =0, the claim is that M = L, for some lim(c).
In particular, we claim that M = Lypy).

e Since a — a + 1 is absolute for M, o(M) must be a limit.

e L, C M. Since lim(a), Lo = Uﬁ<a Lg, and § € M for all § < a. (08, x)
is absolute for M, so Lg € M for all 8 < «. Hence, Uﬁ<a Lz € M by
transitivity of M.
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Note that M = V = L. For 8 < «, (Lg)™ = Lg; hence

e M C L,.
MQUBQXL@

&

Theorem 13.27. For every x, «, if L(x) and x C L, then there is some
B < |a|t with z € Lg.

Remark. We first remark that this theorem implies the GCH; note that if x C &
then © C L,. This theorem says that every subsset of L, gets constructed at

some stage prior to |o|T; hence the set of all such subsets must occur at stage
o™

Proof. Observe that 6 is a conseqnece of V' = L. Since 6 is a single sentence,
we can apply the Reflection Principle.

Suppose x C L, and L(x); hence there is some 0 with € Ls. Pick 8 > 4,
B > «, lim(B) from the club class of ordinals reflecting 6 in L. Hence x € Lg,
and we note that L, C Lg.

Since AC holds in L, by the Lowenheim-Skolem theorem there is some N =<
Lg such that L, U{z} C N and |N| = card(«); we also note that N = 6 since
N =< Lg. Also, observe that L, U {z} is transitive, since z C L,. (However, N
might not be transitive.)

But N is extensional and well-founded, so by the Mostowski collapsing theo-
rem, it is isomorphic to a unique transitive set M, and the isomorphism preserves
L, U{z} (the Mostowski isomorphism is the identity on any transitive sets).

Hence M |= 6 since it is isomorphic to N. So M = L., lim(y), with a <
v < |a|t (o < v since Lo C Ly; v < |a|T since M has cardinality «). ]

59



Lecture 20: Independence of CH, part I
April 6, 2009

14 Independence of CH

Remark. We will now spend the next few lectures proving the independence of
CH from ZFC, as shown by Cohen in 1963 by the (in)famous “method of forc-
ing.” In particular, we will show that Con(ZFC) = Con(ZFC+-CH), since
we have already shown (via the Constructible Hierarchy) that Con(ZFC) =
Con(ZFC + CF).

The general idea is that we will start with a countable transitive model M
of ZFC (hereafter, “countable transitive model of ZFC” will be abbreviated
“ctm”). (We note that for every finite T C ZFC, there is some countable
transitive model of T, via the Reflection principle, Léwenheim-Skolem, and
Mostowski.)

Then we will construct a set G ¢ M and a ctm M][G] such that

o G € M[G],

o o(M) = o(M[G),

e M C M[G], and

e M][G] is the least such extension of M.

Then note that M[G] = ZFC +V # L (since LM = LMIC]),

Now suppose ZFC+—-CH 0= 1. Then by compactness there is a finite T'
such that T+ —CH + 0 = 1. Then we will show that if M is a ctm for T C T”,
then M[G] is a ctm for 7" U -CH. (T" is T plus the finite amount of stuff we
need to throw in to make the various proofs involved go through).

Remark. Let M be a ctm. We will now consider partial orders (P, <,1) € M
with a maximal element 1. Note that in what follows, P will always refer to
an arbitrary such partial order with maximal element. First, let’s look at some
examples, which will come in handy later and serve to motivate some of the
definitions to come.

Let FP(X,Y) be the set of finite partial functions from X to Y. This forms
a poset with reverse extension as the ordering (that is, p < ¢ <= ¢ C p) and
the empty function as the maximal element. The idea is that partial functions
specify constraints on some sort of model, and p < ¢ holds exactly when all
models that satisfy p also satisfy ¢ (but p may be more restrictive than ¢, so
fewer models may satisfy it).

A particular example of this sort of structure is FP(w,?2), the set of finite
partial functions from w to 2. We can think of elements of this partial order
as specifying conditions on a binary real number (the values of some places are
specified, and some are not).
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Definition 14.1. Let p,q € P. Then p is compatible with ¢, denoted p T ¢, if
there exists r € P such that r < p and r <gq.
p is incompatible with ¢, denoted p L g, iff they are not compatible.

Remark. Compatibility of p and ¢ is just a formal way of saying that p and ¢
don’t conflict; that is, they do not represent contradictory constraints.

Definition 14.2. A set X C P is upward closed iff for every p € X and every
qeP, if p<qgthenqe X.

Definition 14.3. G C P is a filter iff
e Any two elements of G are compatible, and
e (G is upward closed.

Definition 14.4. D C P is dense in P iff for every p € P, there exists some
q € D for which ¢ < p.

Remark. As an example, the set D,, = {p | n € dom(p) } is dense in FP(w,2)
for all n.

Definition 14.5. G C P is P-generic over M iff for every P-dense D € M,
e GND # (), and
e (G is a filter.

Lemma 14.6. For every ctm M, P € M and p € P, there is some G C P with
p € G such that G is P-generic over M.

Proof. Since M is countable, we may enumerate the dense sets in M; call them
D'.D? D3, ...

Now let pg = p, and for each i + 1 pick p;y1 € D! such that p; 1 < p;
(such a p;y1 must exist since D! is dense).

Let G be the upward closure of {pg,p1,...}. Then G is a filter by tran-
sitivity of <, and its intersection with every dense set in M is non-empty by
construction; hence G is a P-generic set over M which contains p. 4

Remark. Consider again the example of FP(w,2). We already noted that the
family of sets D,, defined above are dense. Note also that D,, € M for any ctm
M, which we can show by various tedious absoluteness arguments. (We must
also note that F'P(w,2) € M, but this can also be seen by various straightfor-
ward absoluteness arguments.)

By Lemma 14.6 we know that there is some set G which is FP(w, 2)-generic
over M. Now consider f = |JG. Since G is a filter, f is a partial function
w — 2 (G does not contain any incompatible elements, so taking its union does
not result in any disagreements, and f is therefore functional).

Moreover, since D,, € M for all n and G is F P(w,2)-generic, we must have
n € dom(f) for all n (G must contain some element of D,, for every n). Hence
f is actually a total function w — 2.

Two big questions immediately spring to mind: is G € M? And is f € M?
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Lemma 14.7. Suppose every element of P has incompatible extensions; that is,
for every p € P, there exist q,r € P such that g <p, r <p, and q L r. Then if
G is P-generic over M, G & M.

Proof. Suppose otherwise, that is, G € M. Then P — G € M. We claim that
P — G is dense: every p € P has incompatible extensions, which can’t both be
in G, so there is at least one ¢ < p with ¢ € P — G. But then, by definition of a
P-generic set, we have G N (P — G) # (), which is absurd. e

Remark. For example, FP(w,2) clearly has the property described in the above
lemma; given some finite partial function p, pick some n ¢ dom(p), and define
q and 7 to be extensions of p which send n to 0 and 1, respectively. So the G
described in the previous remark is not an element of M. Moreover f =|JG &
M as well; if it were, we would be able to construct G in M.

We can now restate our goal: given a ctm M, some partial order P € M,
and some G which is P-generic over M, we want to show that there is a ctm
M]|G] satistying the conditions in the opening remarks.

Remark. Consider again FP(X,Y) € M, the poset of finite partial functions
from X to Y. (We assume that X € M and Y € M.) Assume further that X
is infinite, and Y # 0.

We know that there exists a G which is FP(X,Y)-generic over M. Again,
let f =|JG. By an argument similar to that before, f is a partial function from
X to Y since G is a filter. Also, for every a € X we may define D, = {p|a €
dom(p) } which is dense, so again f is in fact a total function.

Moreover, we may also define D = {p | b € rng(p) }; these sets are also
dense since X is infinite (we can always pick an unused element of the domain
to map to the chosen element of the range). Thus, we conclude that f is
surjective.

For example, we can look at FP(w, (R,)™). Following the above construc-
tion, we get a surjective function that “collapses” R, in M[G]. More on this in
the next lecture.
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Lecture 21: Independence of CH, part II
April 8, 2009

Theorem 14.8. M[G] = ZFC +-~CH.

Remark. Of course, this proof is modulo a number of lemmas that we haven’t
proved yet (in fact, we haven’t even yet defined M[G]!). But we are now at a
point to give the high-level structure of the proof, and fill in the details later.

Proof. Given a ctm M, consider FP(k X w,2) where (k > R;)™ and Card™ (k),
and let G be FP(k X w,2)-generic over M. Then as noted previously, F = JG
is a total, surjective function k X w — 2.

(Note that x € M is a cardinal in M, that is, Card™ (k). It may not be a
cardinal in the universe! In fact, since M is countable and transitive, x definitely
isn’t a cardinal in the universe unless kK = w.)

Now define a “curried” version of F',

fa(n) = F({a, n)),
and for any o« # 3, define

Dap = {p € P | In.({a,n) € dom(p)A(B,n) € dom(p) Ap({a, n)) # p((B,n))) }-

That is, D, is the set of partial functions which disagree at (a,n) and (3, n)
for some n. Note that if GN Dyg # 0, then f, # fg, since there will be some n
for which f, and f3 disagree.

However, D, is dense for all distinct o, 3 < k: given any p € P, we may pick
some n ¢ dom(p) and construct ¢ € Dyg to be p extended with ¢({«,n)) = 0 and
q({8,n)) = 1. It is also not hard to see that D,s € M. But G has nonempty
intersection with every dense set in M; therefore, f, and fz are distinct for
every distinct a and (3.

Thus, we have a k-sized collection of binary valued functions on w, and hence
2% > k: we may pick kK = Ry to observe that the CH is not true in M[G]. ©

Remark. There is one teensy worry with the last sentence of the above proof—
what if M[G] collapses cardinals? That is, although x is a certain cardinal in
M, we may worry that it gets collapsed to something smaller in M[G], so that
the above argument says nothing in particular about the CH in M[G]. We will
see that this is not the case, but proving it will take considerable effort.

Lemma 14.9 (M|[G] preserves cardinals). If k > w and k < o(M) and M =
Card(k), then M[G] E Card(k).

Remark. This is enough to show not only that x is still a cardinal in M[G], but
that it is a cardinal just as big in M[G] as in M (that is, it can’t be collapsed to
a smaller cardinal). This follows from the fact that the notion of being greater
than some other cardinal is absolute.

To prove this lemma, we’ll first need a number of definitions and sublemmas.
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Definition 14.10. X C P is an antichain iff p L q for every distinct p,q € X.

Definition 14.11. We say that P has the ccc (embarrassingly, this stands for
“countable chain condition”) iff every antichain X C P is countable.

Definition 14.12. Z is a quasi-disjoint collection of sets iff there exists an a
such that u N v = a for every pair of distinct elements u,v € Z.

Lemma 14.13. FEvery uncountable collection of finite sets has an uncountable,
quasi-disjoint subset.

Proof. Let S be an uncountable collection of finite sets. Without loss of gener-
ality, we may assume that every u € S has cardinality n, for some n € w (note
that for some 1,

Si={ueS||ul=1i}

is uncountable).

The proof is by induction on n. The base case, n = 1, is easy; we may just
take a = ).

If n > 1, there are two cases to consider.

e First, suppose that for some e, there are uncountably many u € S with
e € u. Let T denote the set of all such u, and let

T-={u—{e}|ueT}.

This is an uncountable collection of sets of size n — 1, so by the inductive
hypothesis, there is an uncountable, quasi-disjoint subset of T, call it
T*. But we may then form the set @ = {u U {e} | v € T* }, which is an
uncountable subset of T" which is quasi-disjoint—if the common intersec-
tion of the elements of T™ is a, the common intersection of the elements
of @Qis aU {e}.

e Now suppose that there is no element e which occurs in uncountably many
u € S. For each e € |5, let T, denote the set of all u € S which contain
e. We now recursively construct a sequence of pairwise disjoint u, € S
for a < Ny as follows.

Pick uy € S arbitrarily. Now for each 0y < Ny, consider the set
T, ={T. | e € ug for some § < ~v}.

T, is a countable union of countable sets (there are countably many ug,
each of which is finite, and by hypothesis each T is countable), and hence
countable. Therefore S — T, is nonempty and we may arbitrarily pick
uy €S -T,. 4

64



Lecture 22: Independence of CH, part III
April 13, 2009

Lemma 14.14. IfY is countable, then FP(X,Y') has the ccc.

Proof. Suppose Y is countable and consider any uncountable set of finite partial
functions
P={p,|a<N }CFP(X,)Y).

We wish to show that P is not an antichain.

Let Z = dom[P]. By Lemma 14.13, there is some Z' C Z which is uncount-
able and quasi-disjoint. Let d be the common intersection of the elements of Z’,
and consider the set of functions Y. This set is countable since Y is countable
and d is finite.

For p,q € FP(X,Y), define p ~ qiff p [ d = ¢ | d, and P' = {p, |
dom(p,) € Z'}. Consider P’/ ~: each equivalence class is represented by some
function d — Y, so there are countably many equivalence classes. However, P’
is uncountable, so there must be some uncountable equivalence class, call it B.
But any two p,q € B are compatible, since they agree on d, the intersection of
their domains. Hence P is not an antichain: in fact, it must contain uncountably
many compatible elements! 4

Lemma 14.15 (Approximation Lemma). If (P has the ccc)™, M is a ctm,
X, YeMand f: X -Y € M[G], then there is an F : X — P(Y) € M such
that for every a € X, f(a) € F(a) and (F(a) is countable)™ .

Remark. This lemma essentially says that given any function f € M|[G], we
may “approximate” it in M, even though f itself may not be an element of M.
We defer the proof of this lemma to the remainder of the semester.

Lemma 14.16. If (P has the ccc)™ and M is a ctm, then Card™ (k) implies
CardMIC (k).

Remark. Note that Card(x) denotes “k is a cardinal”; not to be confused with
card(k), the cardinality of k. We also note that this lemma is only interesting
for uncountable k, since finite cardinals and w are absolute; we don’t have to
worry about those getting collapsed in M[G].

Proof. Suppose, by way of contradiction, that Card™ (k) but there is some
infinite § < x and some f € M[G] with f: (3 — K
onto

By Lemma 14.15, there is some F' : § — P(x) € M for which |Jrng(F) = k.
But now (card(k) = & = card(|Jrng(F)) < card(8) x Ry = card(f) < k)M, a
contradiction. =

Definition 14.17. 7 is a P-name iff 7 is a relation and for every (o,p) € 7, o
is a P-name and p € P.
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Remark. This definition might seem circular, but we can formalize it by induc-
tion on the transitive closure of 7.

Definition 14.18. Suppose 7 is a P-name and G C P. Then define
val(r,G) = {val(o,G) | Ip € G. (o,p) € T }.

Definition 14.19. V' denotes the class of all P-names. MF denotes M N VT,
which is equal to (VF)M because of some lemma about recursion and absolute-
ness.

Remark. Let’s look quickly at a few examples.
e Of course, () € V¥ trivially; val(f, G) = 0 for all G.
e Also, consider 7 = {(0),p)} € VF. We have

val(r,G) = {é@} ped

otherwise.

p={(0,1p)} is also a valid P-name; val(p, G) = {0} for all filters G.

e We may generalize this to

&={(1p) |yca}

We can consider & to be a “canonical name” for z: val(z, G) = z for every
filter G.

Definition 14.20. Given a ctm M, P € M, and a G which is P-generic over
M, define
M[G] = {val(,G) | T € M" }.

Remark. By the above remark concerning canonical names, we observe that
M C M[G].
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Lecture 23: Independence of CH, part IV
April 15, 2009

Remark. In the previous lecture, we defined the generic extension M[G] of any
ctm M with respect to a set G which is P-generic over M. Today, we will begin
to verify that it has the required properties. In particular:

e M C MIG]. (We showed this in the previous lecture.)

e G € M[G].

e M[G] is transitive.

e o(M) = o(MI[G]).

e M[G] is a ctm.

e M[G] is the least extension of M with these properties.
Lemma 14.21. G € M|[G].

Proof. Consider the set
A={{p,p) |peP}

We have already seen that & € M whenever x € M, so A € M by pairing and
replacement (M is a ctm). Also, A is clearly a P-name. But val(A,G) = G, so
we conclude that G € M[G]. &

Lemma 14.22. M|G] is the least extension of M with the required properties.

Proof. Suppose there is some ctm N such that M C N and G e N. ME C N
since M C N, so val(1,G) € N for all 7 € M¥ (val is definable in M[G], and
absolute since it is defined by recursion). Therefore, M[G] C N. &

Remark. From now on we will use the abbreviation 7¢ in place of val(r, G).
Lemma 14.23. M|[G] is transitive.

Proof. Suppose x € M[G] and y € z. By definition of M[G], there is some
7 € MP for which « = 7. Expanding out the definition of 7¢, we have

x=17¢={0g|Ipe G {o,p)eT}.

Therefore y = oG for some o € VT, but since M is transitive, 0 € M as well
(since 7 is). Hence y € M[G]. &

Lemma 14.24. o(M) = o(M[G]).
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Proof. o(M) < o(M[G]) follows directly from the fact that M C M[G].

To show that o(M[G]) < o(M), we show that rank(7¢) < rank(7), by struc-
tural induction on 7. If 7 = (), then rank(7g) = rank(f) = 0.

In the inductive case,

rank(7g) = rank({og | 3p € G. (o, p) € 7 })
<rank({og | (o.p) € T})
<rank({o | (o,p) €T}) (IH)
< I‘ank({< p) | {o.p) €T}
nk(7).

Now we note that if « € M[G], then there is some 7 € M for which 7¢ = «, and
a = rank(a) < rank(7) = 8, and that rank(r) € M whenever 7 € M. (?7) &

Remark. Tt remains to show that M[G] is a ctm; but before we do that, we talk
about the method of forcing, and use it to prove the Approximation Lemma
(Lemma 14.15).

Definition 14.25. Let M be a ctm and P € M a poset with a maximal element.
Suppose ¢(z1,...,7,) is some formula and 71,...,7, € MF. Then p forces
o(T1, ..., Tn), written

plae (T, .., Th)s

iff for every G which is a P-generic extension over M with p € G,

MI[G] & o(T1Gs -+ Taa)-
Remark. Often M and P will be clear from the context and we omit the sub-
scripts on IF.
Remark. We now state two essential (and somewhat surprising) results about

forcing; their proofs will be put off until later.

Theorem 14.26 (Truth). M[G] = ©(T1q,---,Tng) if and only if there is some
p € G for which pl- o(T1,...,7,).

Theorem 14.27 (Definability). For every ¢(x1,...,x,), there is a formula
denoted
pIF oy, ..., 20)

such that for allty,..., 7, p Ik ©(T1,...,7) if and only if M = (p IH* (11, ..., 7).

Remark. In other words, the notion of forcing is definable within M itself. This
is rather surprising, since the definition of forcing quantifies over all generic
extensions, which are not elements of M!

Lemma 14.28 (Preservation of forcing). For all formulas ¢ and s,t € P, if
s <tandtl- @, then sk .

68



Proof. Suppose s ¥ p—that is, there is some G P-generic over M with s € G
and M[G] ¥ . But since G is a filter, it is upward closed; hence s € G implies
t € G, which is a contradiction since ¢ IF ¢. B4

Remark. We now return to prove the Approximation Lemma (Lemma 14.15).

Proof of Lemma 14.15. Let 7 € MP such that 7¢ = f. By Theorem 14.26
(Truth), there is some p € G such that plk-7:2 — 9.
Now, for each a € X, define

F(a)={b|3g<p.qlk7(a)=0b}.

Then by definability of forcing in M (Theorem 14.27) and the fact that M is a
ctm, we have that F' € M.

Now suppose f(a) = b; we wish to show that b € F(a). Since f(a) = b, in
particular we have that M[G] = 7g(a) = b. Hence, by Truth, there is some
r € @ such that r IF 7(a) = b. Since G is a filter and p,r € G, there is some
g € G for which ¢ < p and ¢ < r. By Lemma 14.28, ¢ I+ 7(a) = b. But then
b € F(a) by definition.

Finally, we show that F'(a) is countable in M for every a € X. Since M
is a ctm, it satisfies AC, so there is a choice function ¢ : F'(a) — G such that
g(b) < p and g(b) IF 7(a) = b for each b € F(a); that is, for each b, g picks a
witness of the fact that b € F(a). (We note that for each b, the set of ¢ which
witness b € F(a) is in M by definability of forcing and the fact that M is a
ctm.)

We claim that for any two distinct b, b’ € F(a), g(b) L g(b'). (Note that this
also implies that g is injective.) To see this, suppose b # b" and g(b) T g(b).
Then since G is a filter, there exists some r for which r < g(b) and r < g(¥').
But then by preservation of forcing,

rlF7:4 — g (since r < g(b) < p),
rlF 7(a) = b, and
ri-r(a) =v,

which is a contradiction since we assumed that b # b'.

Therefore, g[F(a)] is an antichain, and hence countable in M since P has
the ccc in M by assumption. Therefore, since g is injective, F'(a) is countable
in M. B4

Remark. We now know, by Lemma 14.16, that any extension of a ctm M defined
with respect to a F'P(Ry X w, 2)-generic set doesn’t collapse cardinals.

We also note the general shape of the preceding proof: we went from some
combinatorial property of a partial order P (here, the ccc property of FP(X,Y))
to a property of P-generic extensions of a ctm M. This is typical of forcing
arguments, although in general the combinatorial proerties may be much more
complicated, and the proofs correspondingly more difficult.
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Lecture 24: Independence of CH, part V
April 20, 2009

Lemma 14.29. M|G] is a ctm of ZFC.

Proof. We show that M[G] satisfies each axiom of ZFC.
e Extensionality. Follows easily from transitivity of M[G].
e Regularity. Trivial.

e Pairing. Let z,y € M[G]; then there exist 7,0 € M¥ with 7¢ = x and
oa = y. Now consider the set

6= {<T, ]-IF’> ) <Ja 1IP’>}

It is easy to see that dq = {7g,0¢} = {z,y}. But note that § € MF: it is
a P-name by construction, and is in M since M is a ctm.

e Union. Suppose a € M[G]. We wish to show that there is some b € M[G]
which contains | J a as a subset (we can then appeal to Separation in M[G],
which we will show later).

Since a € M[G], there is some 7 € M¥ with 7¢ = a. Let 7 = |Jdom(7);
this is a set which contains the P-names of all elements of 7 (and possibly
some extra ones whose corresponding conditions are not in G). © € M
since M is a ctm; m € V¥ by construction (dom(7) is a set of P-names, so
Udom(7) is a subset of VF x P). Hence 7 € M¥, so ng € M[G].

We claim that | Ja C mg. To see this, let ¢ € a; then ¢ = o for some
o € dom(7). Therefore o C 7, so o¢ C 7g.

e Separation. Let 0 € M* and let ¢ be a formula (it may have multiple
parameters, but we omit them in the following proof), and define

c={acoq|M[G| | pld}.
We wish to show that ¢ € M[G], which we will do by finding a suitable

P-name for c.

We claim that a suitable P-name is
p={(mp) €dom(c) xP|plkmeaner)}

We first note that p € M by separation in M and definability of I (The-
orem 14.27); p is clearly a P-name by construction. Now we must show
that pg = c.

— (pe C ¢). Suppose z € pg, so there is some (m,p) € p such that
x =7g and plk m# € 0 Ap(r) and p € G. Then by definition
of forcing, 7 € o¢ and M[G] = ¢[rg]. Hence © = ng € ¢ by
definition of c.
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— (¢ € pg). Suppose a € ¢, that is, a € og and M[G] = ¢la]. Then
there is some 7 € MF such that 7¢ = a. So by Truth (Theo-
rem 14.26) we may pick p € G such that p IF 7 € 0 A p(7w). Then
(m,p) € p,s0 a=17¢g € pa-

e Replacement. At this point, we introduce the axiom schema of Collection:
Ve.JyVz € z.(Fw.p(z,w) = Jw € y.p(z,w)).

Intuitively, this states that we can collect elements in the image of any set
2 under any partial relation ¢ into a set y (which may also contain other
stuff). This implies the axiom schema of Replacement: we may take ¢ to
be a functional relation, and then given a set y witnessing Collection, we
may use Separation to yield a set which is exactly the image ¢[z].

It turns out that Collection is also a theorem of ZF, via the reflection
principle.

Now suppose we have some x = og; we wish to exhibit a p for which
M[G] EVz € 0g.(Fw.p(z,w) = Jw € pg.p(z,w)). (2)
Let S € M such that

M =V € dom(o).Vp € P.(3u. M () A p - (7, )
= (3u e S).plk p(m,n).

It is not a priori clear that such an S exists. If MT were a set, we could
just take S = MPT, but MF may be a proper class. However, such an S
does exist, which we can show as follows (note that in the following, all
our reasoning is taking place inside M). By Reflection in M, there is a
closed unbounded class of ordinals o which simultaneously reflect the two
formulae

3. MF (1) Ap I o(m, )

and
MF () Ap - (),
that is,
v € dom(0).Vp € P.(Ipu.M" () Ap I o(m, 1)
& [FuM" () Ap Ik o(m, w)] "), (3)
and

Vr € dom(o).Vp € IP’.VM.(MP(M) Aplk o(m,p)
& [M" () Ap - p(m, m)]"). (4)

So, we may pick such an « large enough so that dom(o) € V,, and P € V.
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We then let S = MF N V,, and claim that S has the required property.
Given some 7 € dom(o) and p € PP, suppose there exists some p € MF
for which p IF ¢(m, ). Then by equation (3) there is some p € V' which
satisfies [M¥ (1) Ap IF p(m, 1)]V>; but then by equation (4) u also satisfies
this condition in the universe, so u € S and p b o(m, p), exactly the
required property of S.

Now let p = S x {1p}, so pg = {pg | p € S} (since G is a filter). Now
we must show that p satisfies equation (2).

To this end, let z € og and eMIC](z,w) for some w € M[G]. We must
find some w’ € pg for which MG (2, w").

Since z € og, z = 7w for some 7 € dom(o). We know that M[G] =
Jw.p(rg, w), so there must be some y for which M[G] = ¢(r¢q, 1ie). Then
by Truth there is some p € G such that p I (7, ). Then by the property
of S, there is some p/ € S such that p IF ¢(7, 1'), and pg € pa. e

Remark. We are not quite done; in the next lecture we will cover Powerset and
Choice. But now, a small digression about the axiom schema of Collection.

Definition 14.30. Kripke-Platek set theory is the axiomatic system with Ex-
tensionality, Regularity, Pairing, Union, and all A instances of Separation and
Collection.

Remark. Tt is easy to see that V,, = K P, since it models ZF — Infinity. KP +
Infinity is a nice system, too.

Definition 14.31. An ordinal « is admissible iff L, = KP.

Remark. Admissible ordinals “are those which support a nice notion of com-
putability.”

Definition 14.32. R C w X w is recursive iff cg, the characteristic function of
R, is Turing-computable. An ordinal « is recursive iff it is the order type of
some recursive R C w X w.

Definition 14.33. w?K , the Church-Kleene ordinal, is the least non-recursive
ordinal.
(w§E)f is the least non-(recursive)/ ordinal, where f € w — 2 and (recursive)/

means Turing-computable given an f-oracle.

Theorem 14.34. If « is a countable ordinal greater than w, then « is admissible
iff @ = (W) for some f € w — 2.

Remark. The proof is omitted.
We note that wch is, in fact, the set of all recursive ordinals, so in particular
it must be countable (since there are countably many Turing machines).
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Lecture 25: Independence of CH, part VI
April 22, 2009

Remark. We now return to finish the proof that M[G] is a ctm.

Proof. e Powerset. Let o € M[G]. We wish to construct some p € MF
such that
Ve.x Cog = x € pg.

This suffices, because once we have obtained a covering of the power set
in this manner, we can use Separation to cut out the exact power set.

To this end, let
S ={reM"|dom(r) C dom(c) }.

We note that S € M, since it is equal to [P(dom (o) xP)]™, and P(dom(c) x
PP) exists in M since it is a ctm.

Now let p = S x {1p}. We claim that this is the desired p. To see this,
suppose € MT and pug C og; we must show that pug € pg. Let

T={{(mp) | medom(o) AplFTep}.

We note that 7 € M by definability of forcing; also, 7 has the form of a
P-name, so 7 € MT. Then by definition of S, it is easy to see that 7 € S.
Therefore, 76 € pg.

To complete the proof, we claim that 7¢ = ug.

— (g C 7¢). Let y € pg. Since pg C og, there must be some
7w € dom(o) for which y = mg € og. Therefore, by Truth, there is
some p € G for which p IF 7 € u. So (m,p) € 7 by definition, and
hence y = mg € 7¢ (since p € G).

— (16 C pg). Suppose y € 7¢. Then y = 7 for some 7 with (7, p) € 7,
p € G, and plF 7 € p. So, by definition of forcing, y = 7g € pg-

e Choice. We first give the following alternate formulation of the well-
ordering principle:

Vz.3f.3a € Ord.dom(f) = a Az C rng f.

Some thought should show that this is equivalent to the familiar version of
the well-ordering principle; given a set x, if we have a function f postulated
by the above axiom, then we can use f to construct a well-ordering of z:
put the elements of z in order according to the least 8 such that f(3)
yields them.

Fix x = o¢. Since M satisfies Choice, there is some well-ordering 7 of the
elements of dom(o):
dom(a) = {m, |7 < a}
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where Ord(a) and the function m(_y € M. 7 is a well-ordering of the
domain of o, which consists of names of elements of z (possibly plus some
extra names). It is not hard to see that we can use a well-ordering of the
names of elements of x to construct a well-ordering of x, as follows.

Let 7 = { (¥,m) | ¥ < a } x{1p}, where (x,y) denotes the name for which
(z,9)¢ = (zG,ya). T € M* since M is a ctm. Moreover,

e = {1, (m)a) [ <a}.
So 7¢ is a function with domain « and o¢ C rng7g, as desired. &

Remark. Hence, M[G] is a ctm; putting this result together with previous re-
sults, we have now shown (modulo the proofs of Truth and Definability) that
there is a G for which

MI[G] = ZFC + -CH,

and therefore that CH is formally independent of ZFC!

15 Ramsey cardinals

Remark. And now, for something completely different! We will now attempt to
show that
ZFC+QFV #L,

where @ is a large cardinal axiom. But first, Ramsey’s Theorem!
Definition 15.1. For any set k, we introduce the notation
[£]" ={z C k| card(z) =n},

that is, the collection of n-element subsets of x. While this definition makes
sense for any cardinal n, we will only use it for n € w.

Definition 15.2. For any cardinals x and A, we define the relation

k= (A

to hold iff for every function f : [k]™ — u, there exists a set x such that
o x C kK,
e card(z) = A\, and
e f | [z]™ is constant.

Remark. f:[k]™ — u can be seen as a labeling of the n-element subsets of &,
using labels from p. For example, if n = 2, such an f can be thought of as an
edge coloring of the complete graph on k nodes, using p colors. If Kk — ()\)i
holds, it means that we can find a subset of nodes of size A which induces a
monochromatically colored complete subgraph.

74



Theorem 15.3 (Ramsey’s Theorem). w — (w)?, for all n,m € w.

Remark. This seems somewhat surprising! But it is true. In the finite case, it
is famously true that for any [ € w, there exists some k € w such that & — (1)3,
but the growth rate of the smallest such k with respect to [ is astronomical (and
unknown). Note famous quote by Erdds regarding this function and hostile

aliens.

Proof. We will only prove the case for 4 = n = 2; it should be straightforward
to see how to generalize the proof.

Let f : [w]?> — {0,1}. We wish to construct a set X C w of size w for which
f ' [X]? is constant. We mutually construct three sequences a;, b;, and X; as
follows:

XO = w
ag = 0
Xit1={neX;| f{ai,n})=b;} b; € {0,1} such that X, is infinite

a;4+1 = least n € X;41 such that n > a;

Note that we can always pick an appropriate b; by an infinite version of the
pigeonhole principle.

Again by the pigeonhole principle, either infinitely many b; = 0, or infinitely
many b; = 1. So we may choose X = {a; | b; = b}, for whichever value of b
makes X infinite (note that all the a; are distinct since we chose them to form
an increasing sequence).

We claim that f | [X]? is constantly b. Let a;,a; € X, and suppose, without
loss of generality, that 7 < k. We know that ar € Xj; but since the X; form a
decreasing chain, a, € X;41 as well. But then by definition, f({a;,ar}) =b; =
b.
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Lecture 26: Ramsey cardinals
April 27, 2009

Definition 15.4. k is weakly compact iff x is uncountable and x — (k)3.

Lemma 15.5. If k is weakly compact, then k — (/{)Z for every p < k.
Proof. The proof is a problem on the final exam. 4
Lemma 15.6. If k is weakly compact, then k is strongly inaccessible.

Proof. We must show that & is regular, and that it is a strong limit.

e k is regular. Suppose otherwise; then let A < k and {7, |a <A} C k an
increasing sequence with sup{ v, | @ < A} = k. Without loss of generality,
assume yg = 0.

We note that v naturally induces a partition of x into A many segments.
Now, define

0 Ja>0.4,¢¢€ ['Ym'yaJrl)?
1 otherwise.

f{o,¢}) {

f induces a 2-partition on [x]?; hence, since x is weakly compact, there

must be some set Y C & of cardinality x where f is constant on [Y]?.

Since f is constant on [Y]?, there are two cases to consider. First, we
could have Y C [Ya,7a+1) for some «; but this is a contradiction since
[[Yos Yat1)] < Yat1 < K, and |[Y| = k. Alternatively, we could have
card(Y N [YasYat+1)) < 1 for all @. But then |[Y| < A < k, another
contradiction.

e r is a strong limit. Suppose otherwise, that is, there is some A < x with

k < 2*. Then there exists some injective function g L a9, (Recall that
A2 is the set of functions from A to 2.) Now use g to define a partition
f:[k]? = X as follows:

F({a, B}) = the least v for which ga(7) # g5(7)-

We note that f is total since g is injective.

However, it is impossible to find a homogenous set of size three under this
partition, much less size k.

B
Definition 15.7. ks a Ramsey cardinal iff Kk — (k)5%.

Lemma 15.8. If k is a Ramsey cardinal, then k — (k)5 for all p < k.
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Proof. This is also a problem on the final exam. &

Lemma 15.9. Suppose £ is a Ramsey cardinal, and (D, N, E) is a directed
graph with a binary coloring on the nodes (in particular, D is the set of nodes,
N C D is the set of nodes which are red, and E C D x D is the set of edges) such
that |D| = k and |[N| = XA < k. Then there is some (D',N',E') < (D,N, E)
such that |D'| = k and |[N'| = Rg.

Proof. Fix a collection of Skolem functions for (D, N, E), and let h(X) denote
the Skolem hull of X in (D, N, E) for X C D.
For every finite C' C D, let

f(C) = NC where h(C) = <Dc,Nc,Ec> .

Since N¢ C N for each C C D, we note that f : [D]<¥ — P(N), so it is a
partition of finite subsets of D into at most 2* classes.

Since k is a Ramsey cardinal, it is weakly compact, and hence strongly
inaccessible by Lemma 15.6. Therefore 2* < &, and again since x is a Ramsey
cardinal, we conclude by Lemma 15.8 that there is some set Y C D of cardinality
k for which f is constant on [Y]™ for all n € w. For each n, let X,, = f(C) for
|C| =n.

Note that X, is countable for all n, since f(C) = N C D¢, and the Skolem
hull of a finite set is countable.

Now let (D', N', E') = h(Y)). We claim that h(Y) = Ugc, y h(C), where
A Cgn B denotes that A is a finite subset of B: a proof that y € h(Y) consists
of a finite tree with elements of Y at the leaves and Skolem functions at the
internal nodes, so for each y we may choose C' to be the set containing all the
leaves.

h(Y) 2 (D, N, E) by construction; N' = J, ., X, which is countable; and
taking the Skolem hull preserves cardinality, so |D’| = |Y| = k. &
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