Based on August 30 material

- §1.5 (p 73): 4
- If \(x^2 \) is irrational, then \(x \) is irrational.
 a. Prove it.
 b. What kind of proof did you use for the previous problem (direct, indirect, vacuous, trivial, contradiction)?
- Is the product of two irrational numbers always rational, always irrational, or sometimes rational and sometimes not? Prove your answer.
- Suppose \(n \) is a three-digit number — i.e., \(n = 100a + 10b + c \) for three integers \(a, b, \) and \(c \) between 0 and 9. Prove that \(n \) is a multiple of 3 if and only if the sum of \(n \)'s digits (i.e., \(a + b + c \)) is a multiple of 3.

Based on September 1 material

- §2.4 (p 167): 14. The answer is 24, but argue that this is the answer without resorting to a calculator or computer.
- §2.4 (p 167): 26 (\(\phi \) is defined in 25)
- §2.4 (p 168): 46. This is implied if you can show that any divisor of both \(a \) and \(m \) also is also a divisor of both \(b \) and \(m \). (You don’t need to mention this, but the symmetric argument will also show that any divisor of \(b \) and \(m \) is also a divisor of \(a \) and \(m \). As a result, the two sets of divisors are the same, and so the greatest in each set is the same.)
- The previous problem leads to the Euclidean algorithm for computing greatest common divisors: The GCD of \(a \) and 0 is \(a \), while the GCD for \(a \) and a non-zero \(b \) can be computed by computing the GCD of \(a \mod b \) and \(b \).
 a. Use this algorithm to find the following GCDs, showing your intermediate steps:
 i. \(\gcd(40, 30) \)
 ii. \(\gcd(84, 60) \)
 b. Explain why the Euclidean algorithm is related to the previous problem.