

Real-Time Image Processing in
Python

Gabriel J. Ferrer
Hendrix College

The Situation

● Using netbook to control a robot
● Supports research and teaching in computer vision

● Why Python?
● Rapid prototyping of algorithms
● Easy frame-grabbing with the pygame library

● Why not Python?
● Notoriously bad performance in tight loops

● Solution
● Use Cython and Numpy

Just how slow is Python, really?

● Benchmarking web site
● http://shootout.alioth.debian.org

● Median Python vs. C
● C is about 50 times faster than Python

http://shootout.alioth.debian.org/

Robot Vision Processing

● Goal
● Use image sequences to guide robot behavior

● Process
● Acquire an image
● Transform it into a data structure
● Select a robot action based on data structure

● Performance consideration
● Rate of action selection is bounded by rate of image

acquisition and transformation

Real-Time Image Processing

● Real-time systems
● Correctness of code depends on whether deadlines

are met
● Efficiency is helpful
● Only necessary for meeting a deadline

● Need for prompt action selection by the robot
● Implies a soft deadline for the image computations
● Ideal is 10 frames/second
● Performance degrades below this point

Performance issues in image
processing

● Images are arrays
● Must visit every array element
● Need fast array access
● Need fast looping

● Typical operations
● Image subtraction
● Edge detection
● Color matching
● Connected components

Pygame Library

● As of version 1.9, includes frame grabbing
● Includes several important modules:

● pygame.display
– Handles rendering to a window

● pygame.surface
– Represents an image

● pygame.camera
– Grabs images from a camera

Initialization

import pygame

import pygame.camera

from pygame.locals import *

pygame.init()

pygame.camera.init()

size = (640, 480)

Setting up

d = pygame.display.set_mode(size, 0)

s = pygame.surface.Surface(size, 0, d)

c = pygame.camera.list_cameras()

cam = pygame.camera.Camera(c[0], size)

cam.start()

going = True

Main Loop

while going:

 if cam.query_image():

 s = cam.get_image(s)

 d.blit(s, (0, 0))

 pygame.display.flip()

 for e in pygame.event.get():

 if e.type == QUIT:

 cam.stop()

 going = False

Processing Images

● Pygame surfarray library
● Converts pygame surfaces to numpy arrays

● Numpy (1.3)
● High-speed n-dimensional arrays (ndarray)
● All elements have the same data type

● Why is the same data type important?
● Tight two-dimensional loop
● Each inner loop iteration involves a type check!

Detecting Moving Objects

● For each frame:
● Convert image to an array
● Subtract the previous array
● Find the non-zero regions of nontrivial size

Applying numpy (1)

● Add before the start of the loop:

last_array = None

diffs = None

s = pygame.surface.Surface(size)

Applying numpy (2)

● Inner loop, if statement body:

s = cam.get_image(s)

s2d = pygame.surfarray.array2d(s)

diffs = s2d

if last_array != None:

 diffs = s2d – last_array

last_array = s2d

pygame.surfarray.blit_array(s, diffs)

Problem

● Excessive background noise
● Solution: Hue, Saturation, Value (HSV)

● Hue: The “type” of a color
● Saturation: The “strength” of a color
● Value: The “whiteness” of a color

● Disregard H and S; just use V

Extracting the Value

● Each color is 24 bits:
● Bits 23-16 are Red (RGB) or Hue (HSV)
● Bits 15-8 are Green (RGB) or Saturation (HSV)
● Bits 7-0 are Blue (RGB) or Value (HSV)

● Mask all but the lower 8 bits to get V
● NB: Display is still RGB

● The V will look blue

Code Alterations

● When initializing cam:

cam = pygame.camera.Camera(c[0],
size, “HSV”)

● Immediately after creating s2d:

s2d = numpy.bitwise_and(s2d, 0xFF)

Finding the Blobs

● Connected components (“blobs”)
● “Islands” in an image that share a characteristic

● Blob finding:
● First, threshold the image

– “Useful” pixels will be high values
● Second, find the blobs

– Returns a list of the blobs

Implementing Blob Finding

● Useful variables to initialize at the start:

b = (0, 0, 0xFF)

r = (0xFF, 0, 0)

t = (0x5A, 0xAA, 0xAA)

Additional Code

● Inside the if statement, after blit_array:

m = pygame.mask.from_threshold(s, b, t)

for blob in m.connected_components(10):

coord = blob.centroid()

pygame.draw.circle(s, r, coord, 50, 5)

Image Shrinking

● Often an effective technique to boost frame rate
● Into our original program, insert at the top:

shrunken = (320, 240)

● Then replace the blit() call with:

p = pygame.transform.scale(s, size)

d.blit(p, (0, 0))

Writing Custom Routines

● Numpy is very nice, but it doesn't do everything
● Basic threshold function:

def threshold(img, value, hi, lo):

 for i in range(img.shape[0])

 for j in range(img.shape[1]):

 if img[i,j] < value:

 img[i,j] = lo

 else:

 img[i,j] = hi

Cython

● Compiles Python programs to C
● From C, compiles to binary object code

● Using version 0.11
● Still very experimental

● Superset of Python
● Will compile any Python program
● For best results, augment with type declarations

Cython Initialization

cimport numpy

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

Cython Type Declarations

def threshold

(numpy.ndarray[numpy.int32_t,
ndim=2] img,

numpy.int32_t value,

numpy.int32_t hi,

numpy.int32_t lo):

 cdef Py_ssize_t i, j

Performance Difference

● Interpreted Python
● 0.85 frames/second

● Cython with type declarations
● 10.81 frames/second

Creating a setup.py script

● Program name: filters.pyx
from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension(“filters”,
[“filters.pyx”])]

setup(name = 'Img proc filters',

 cmdclass = {'build_ext': build_ext},

 ext_modules = ext_modules)

Compiling the program

python setup.py build_ext --inplace

Generated C Code

● Lots of setup code at function start
● Checks expected vs. actual arguments
● Creates lots of temporary variables

● Inefficient function calls inside tight loops
● Use cdef to minimize this

● cdef functions are not callable from Python

● Code is otherwise a direct translation into C
● Numpy arrays are not C arrays

● Array accesses use a macro for pointer arithmetic

Generated C Code

for (__pyx_t_1 = 0; __pyx_t_1 < (__pyx_v_img->dimensions[0]); __pyx_t_1+=1) {
 __pyx_v_i = __pyx_t_1;
 for (__pyx_t_2 = 0; __pyx_t_2 < (__pyx_v_img->dimensions[1]); __pyx_t_2+=1)
{
 __pyx_v_j = __pyx_t_2;
 __pyx_t_3 = __pyx_v_i;
 __pyx_t_4 = __pyx_v_j;
 if (((*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_int32_t *, __pyx_bstruct_img.b
uf, __pyx_t_3, __pyx_bstride_0_img, __pyx_t_4, __pyx_bstride_1_img)) < __pyx_v_v
alue)) {
 __pyx_1 = __pyx_v_lo;
 } else {
 __pyx_1 = __pyx_v_hi;
 }
 __pyx_t_5 = __pyx_v_i;
 __pyx_t_6 = __pyx_v_j;
 *__Pyx_BufPtrStrided2d(__pyx_t_5numpy_int32_t *, __pyx_bstruct_img.buf, __
pyx_t_5, __pyx_bstride_0_img, __pyx_t_6, __pyx_bstride_1_img) = __pyx_1;
 }
}

Conclusion

● You can do robot vision in Python!
● Pygame

● Frame grabbing
● Some image processing

● numpy
● High-performance arrays
● Matrix arithmetic

● cython
● Compilation; high-performance object code

Resources

● http://www.pygame.org
● http://www.cython.org
● http://wiki.cython.org/tutorials/numpy
● http://ozark.hendrix.edu/~ferrer/presentations/

● These slides
● Sample code

http://www.pygame.org/
http://www.cython.org/
http://wiki.cython.org/tutorials/numpy
http://ozark.hendrix.edu/~ferrer/presentations/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

