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The Situation

● Using netbook to control a robot
● Supports research and teaching in computer vision

● Why Python?
● Rapid prototyping of algorithms
● Easy frame-grabbing with the pygame library

● Why not Python?
● Notoriously bad performance in tight loops

● Solution
● Use Cython and Numpy



  

Just how slow is Python, really?

● Benchmarking web site
● http://shootout.alioth.debian.org

● Median Python vs. C 
● C is about 50 times faster than Python

http://shootout.alioth.debian.org/


  

Robot Vision Processing

● Goal
● Use image sequences to guide robot behavior

● Process
● Acquire an image
● Transform it into a data structure
● Select a robot action based on data structure

● Performance consideration
● Rate of action selection is bounded by rate of image 

acquisition and transformation



  

Real-Time Image Processing

● Real-time systems
● Correctness of code depends on whether deadlines 

are met
● Efficiency is helpful
● Only necessary for meeting a deadline

● Need for prompt action selection by the robot 
● Implies a soft deadline for the image computations
● Ideal is 10 frames/second
● Performance degrades below this point



  

Performance issues in image 
processing

● Images are arrays
● Must visit every array element
● Need fast array access
● Need fast looping

● Typical operations
● Image subtraction
● Edge detection
● Color matching
● Connected components



  

Pygame Library

● As of version 1.9, includes frame grabbing
● Includes several important modules:

● pygame.display
– Handles rendering to a window

● pygame.surface
– Represents an image

● pygame.camera
– Grabs images from a camera



  

Initialization

import pygame 

import pygame.camera

from pygame.locals import *

pygame.init()

pygame.camera.init()

size = (640, 480)



  

Setting up

d = pygame.display.set_mode(size, 0)

s = pygame.surface.Surface(size, 0, d)

c = pygame.camera.list_cameras()

cam = pygame.camera.Camera(c[0], size)

cam.start()

going = True 



  

Main Loop

while going:

  if cam.query_image():

    s = cam.get_image(s)

  d.blit(s, (0, 0))

  pygame.display.flip()

  for e in pygame.event.get():

    if e.type == QUIT:

      cam.stop()

      going = False



  

Processing Images

● Pygame surfarray library
● Converts pygame surfaces to numpy arrays

● Numpy (1.3)
● High-speed n-dimensional arrays (ndarray)
● All elements have the same data type

● Why is the same data type important?
● Tight two-dimensional loop
● Each inner loop iteration involves a type check!



  

Detecting Moving Objects

● For each frame:
● Convert image to an array
● Subtract the previous array
● Find the non-zero regions of nontrivial size



  

Applying numpy (1)

● Add before the start of the loop:

last_array = None

diffs = None

s = pygame.surface.Surface(size)



  

Applying numpy (2)

● Inner loop, if statement body:

s = cam.get_image(s)

s2d = pygame.surfarray.array2d(s)

diffs = s2d

if last_array != None:

  diffs = s2d – last_array

last_array = s2d

pygame.surfarray.blit_array(s, diffs)



  

Problem

● Excessive background noise
● Solution: Hue, Saturation, Value (HSV)

● Hue: The “type” of a color
● Saturation: The “strength” of a color
● Value: The “whiteness” of a color

● Disregard H and S; just use V



  

Extracting the Value

● Each color is 24 bits:
● Bits 23-16 are Red (RGB) or Hue (HSV)
● Bits 15-8 are Green (RGB) or Saturation (HSV)
● Bits 7-0 are Blue (RGB) or Value (HSV)

● Mask all but the lower 8 bits to get V
● NB: Display is still RGB

● The V will look blue



  

Code Alterations

● When initializing cam:

cam = pygame.camera.Camera(c[0], 
size, “HSV”)

● Immediately after creating s2d:

s2d = numpy.bitwise_and(s2d, 0xFF)



  

Finding the Blobs

● Connected components (“blobs”)
● “Islands” in an image that share a characteristic

● Blob finding:
● First, threshold the image

– “Useful” pixels will be high values
● Second, find the blobs

– Returns a list of the blobs



  

Implementing Blob Finding

● Useful variables to initialize at the start:

b = (0, 0, 0xFF)

r = (0xFF, 0, 0)

t = (0x5A, 0xAA, 0xAA)



  

Additional Code

● Inside the if statement, after blit_array:

m = pygame.mask.from_threshold(s, b, t)

for blob in m.connected_components(10):

coord = blob.centroid()

pygame.draw.circle(s, r, coord, 50, 5)



  

Image Shrinking

● Often an effective technique to boost frame rate
● Into our original program, insert at the top:

shrunken = (320, 240)

● Then replace the blit() call with:

p = pygame.transform.scale(s, size)

d.blit(p, (0, 0))



  

Writing Custom Routines

● Numpy is very nice, but it doesn't do everything
● Basic threshold function:

def threshold(img, value, hi, lo):

  for i in range(img.shape[0])

    for j in range(img.shape[1]):

      if img[i,j] < value:

        img[i,j] = lo

      else: 

        img[i,j] = hi



  

Cython

● Compiles Python programs to C
● From C, compiles to binary object code

● Using version 0.11
● Still very experimental

● Superset of Python
● Will compile any Python program
● For best results, augment with type declarations



  

Cython Initialization

cimport numpy

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)



  

Cython Type Declarations

def threshold

(numpy.ndarray[numpy.int32_t, 
ndim=2] img,

numpy.int32_t value,

numpy.int32_t hi,

numpy.int32_t lo):

  cdef Py_ssize_t i, j



  

Performance Difference

● Interpreted Python
● 0.85 frames/second

● Cython with type declarations
● 10.81 frames/second



  

Creating a setup.py script

● Program name: filters.pyx
from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension(“filters”, 
[“filters.pyx”])]

setup(name = 'Img proc filters', 

      cmdclass = {'build_ext': build_ext},

      ext_modules = ext_modules)



  

Compiling the program

python setup.py build_ext --inplace



  

Generated C Code

● Lots of setup code at function start
● Checks expected vs. actual arguments
● Creates lots of temporary variables

● Inefficient function calls inside tight loops 
● Use cdef to minimize this

● cdef functions are not callable from Python

● Code is otherwise a direct translation into C
● Numpy arrays are not C arrays

● Array accesses use a macro for pointer arithmetic



  

Generated C Code

for (__pyx_t_1 = 0; __pyx_t_1 < (__pyx_v_img->dimensions[0]); __pyx_t_1+=1) {
    __pyx_v_i = __pyx_t_1;
  for (__pyx_t_2 = 0; __pyx_t_2 < (__pyx_v_img->dimensions[1]); __pyx_t_2+=1) 
{
      __pyx_v_j = __pyx_t_2;
      __pyx_t_3 = __pyx_v_i;
      __pyx_t_4 = __pyx_v_j;
      if (((*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_int32_t *, __pyx_bstruct_img.b
uf, __pyx_t_3, __pyx_bstride_0_img, __pyx_t_4, __pyx_bstride_1_img)) < __pyx_v_v
alue)) {
        __pyx_1 = __pyx_v_lo;
      } else {
        __pyx_1 = __pyx_v_hi;
      }
      __pyx_t_5 = __pyx_v_i;
      __pyx_t_6 = __pyx_v_j;
      *__Pyx_BufPtrStrided2d(__pyx_t_5numpy_int32_t *, __pyx_bstruct_img.buf, __
pyx_t_5, __pyx_bstride_0_img, __pyx_t_6, __pyx_bstride_1_img) = __pyx_1;
  }
}



  

Conclusion

● You can do robot vision in Python!
● Pygame

● Frame grabbing
● Some image processing

● numpy
● High-performance arrays
● Matrix arithmetic

● cython
● Compilation; high-performance object code



  

Resources

● http://www.pygame.org
● http://www.cython.org
● http://wiki.cython.org/tutorials/numpy
● http://ozark.hendrix.edu/~ferrer/presentations/

● These slides
● Sample code

http://www.pygame.org/
http://www.cython.org/
http://wiki.cython.org/tutorials/numpy
http://ozark.hendrix.edu/~ferrer/presentations/
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