
The Effective Field of View Paradigm: Adding Representation to a Reactive System

Frank Z. Brill, Glenn S. Wasson, Gabriel J. Ferrer, and Worthy N. Martin

Abstract
Dynamic environments pose multiple problems for auton-

omous agents. Traditionally, agents were designed to develop
an internal model of the world and use it to create plans to
achieve their goals. Such a strategy fails when the actual
environment differs from the stored representation. This real-
ization lead to reactive agents, which stored no model of the
world. Today, most researchers would agree that representa-
tion is not intrinsically bad, but the cost of keeping an arbi-
trary amount of representation up-to-date in a dynamic
environment outweighs its benefits.

We present a simple task-dependent representation sys-
tem, called the effective field of view, which can be used to
augment a reactive agent and improve its competence at a
variety of tasks. We have embodied this system in two situated
autonomous agents. With the first, we quantify the amount of
representation necessary for its tasks, as well as the perfor-
mance gains. With the second, we show how the effective field
of view can be used in a hierarchical layered agent architec-
ture. We show that the effective field of view can dramatically
increase agent performance.

1. Introduction

The primary characteristic of reactive systems is a
direct connection between sensors and effectors, i.e., there
can be no inference in the perception/action loop. Direct
connection was initially interpreted as meaning reactive
agents should store no representation [11]. However, there
are many simple tasks that are either difficult or impossi-
ble without representation. For example, suppose you are
driving your car and you come to an intersection. To make
a left turn, you must determine if the cross-street is clear in
both directions. While it may be possible to create a reac-
tive system which can make this determination by rapidly
redirecting its sensors, it is more practical to have a repre-
sentation for “that direction is clear” and maintain the rep-
resentation as the system looks in a new direction.

Now consider making a left turn in a different situa-
tion. You look left and see that the way is clear, then you
look right and see a car coming. A truck pulls up next to
you in the right lane, blocking your view of the oncoming
car. You need to remember that the car was there so that
you don’t pull out. Since the truck occludes the car, a
purely reactive system (without x-ray vision) cannot use
the knowledge of the car’s presence in its action selection.
A reactive agent could wait for the truck to leave, just in
case the truck was occluding any cars. However, this limits

the agent to act only when it can gather all information nec-
essary to select an action at the current instant in time. An
agent with representation can act correctly in this situation
(within some time frame) if it remembers the condition of
the cross-street before the truck arrived. This is a simple
example of a system with representation acting effectively
with limited extent sensors and in the presence of occlusion.

We introduce a concept called the effective field of view,
which allows the agent’s tightly coupled perceptual/action
sub-systems to exchange information usefully. The effective
field of view is a unified, task-oriented description of the
agent’s environment built from current sensor data, the
agent’s expectations and a carefully maintained collection of
recent sensor values [9].

The remainder of this paper is organized as follows.
Section 2 describes the effective field of view paradigm and
discusses how its representations are acquired and main-
tained. Section 3 describes an autonomous agent we have
implemented to perform a complex task using the effective
field of view. Section 4 provides a quantitative analysis of the
performance of the effective field of view agent vs. a pure
reactive agent, as well as the performance afforded by vary-
ing amounts of representation. Section 5 discusses another
autonomous agent which uses the effective field of view as
part of a hierarchical layered agent architecture. The final
two sections present related work and our conclusions.

2. Effective Field of View

Typically, classical planners (see [29] for an overview)
make the impractical assumptions of complete and omni-
scient sensing. Reactive systems [10] alleviate the problems
with these assumptions by always computing the currently
necessary information from the current set of sensor values.
Purely reactive systems need no assumptions about the
ongoing correctness of their sensor data because they place
no “temporal extent” on the information extracted from their
sensors, i.e. they always recalculate the action selection cri-
teria from the most recent sensor values. However, reactive
systems do assume that all information relevant to action
selection can be extracted from the current sensory view1.
1. We use the term “view” to describe the area from which a sensor or set

of sensors can extract information about the environment, at any one
time. This includes sensors which are not traditionally thought of as hav-
ing a view, e.g. sonar.



For complex tasks, however, certain information may
be useful even if it cannot be inferred from the agent’s cur-
rent perceptual input. Consider the task of photographing a
rhinoceros in the wild. The photographer must get out of his
jeep and move around in order to take all the necessary pho-
tos. However, he will not always be able to keep the jeep in
sight. Since it is difficult to predict the mood of a rhinoc-
eros, the photographer wants to remain cognizant of the
jeep’s location at all times. In effect, he assigns a temporal
extent to his last perception of the jeep and updates its loca-
tion, in his mind, as he moves.

This leads us to the concept of effective field of view.
What we typically think of as the field of view of a sensor,
the area from which the sensor can extract information at
any given time, we term the absolute field of view of that
sensor. The effective field of view includes the absolute
field of view, as well as limited amounts of task-dependent
information which may or may not lie outside the current
absolute field of view.

Figure 1 shows the difference between the absolute and
effective field of view. The agent is shown with a pentagon
indicating body orientation and a triangle indicating the
direction of the line of sight. The shaded area delineates its

absolute field of view. The darkened shapes indicate the
objects represented in the effective field of view (these
came from the area of both the current and previous abso-
lute fields of view). In figure 1a, both the jeep and the tree
are in the agent’s absolute field of view. We darken the jeep
and tree-1 to indicate that the agent can take action based on
current sensor readings about them.

In figure 1b, the agent has changed its view, so that the
rhino and a couple of shrubs are in the new absolute field of
view. Shrub-1 is occluded and so is shown undarkened. As
we indicated above, it is in the agent’s interest to know
where the jeep is while looking at the rhino. We contend
that for an agent’s perception/action (PA) component(s) to
function practically, a full world model (including numer-
ous details about the jeep) is not needed. Rather, a limited
amount of representation can be added to the data from the
absolute field of view to form an effective field of view
appropriate to the current task. Thus, we have darkened the
jeep to indicate that the effective field of view in figure 1b
includes the jeep, but not tree-1.

The effective field of view augments the absolute field
of view by giving temporal extent to limited amounts of
information, extracted from the absolute field of view in the
recent past. Two fundamental questions are: what informa-
tion is maintained and for how long? The answer to both of
these questions is task dependent, i.e. what information is
useful? For the photographer agent in figure 1b, the location
of the jeep is useful, while the location of the tree from the
absolute field of view of figure 1a is not.

How long information must be represented will depend
on the current task and the agent’s knowledge of the envi-
ronment. For example, the photographer has more faith that
the jeep will not move from where it was last seen (where it
was parked) than that the rhinoceros will not move from
where it was last seen. The jeep’s representation can safely
be given a longer temporal extent than the rhino’s represen-
tation.

The uniform interface to information in the effective
field of view (described below) allows the agent’s action
selection machinery to consult the effective field of view,
just as it would an ordinary sensor with a larger perceivable
area.

Since the effective field of view involves the represen-
tation of information outside the absolute field of view, we
must address the problems of acquisition and maintenance
for our system of representation.

The “low-level” problems (such as those encountered
in real-time active vision) of acquisition and maintenance
of a stored representation are computationally severe for
even moderately dynamic environments. We argue that any
such representation must be task dependent for efficient and
effective operation. That is, representation is so inherently
difficult to maintain that the agent’s current task must deter-

Figure 1: Effective and Absolute Field of View

tree-2

shrub-1

shrub-2

tree-1

tree-1

tree-2
shrub-2

shrub-1

agent

rhino

jeep

agent

rhino

jeep

(a) Absolute Field of View

(b) Effective Field of View



mine what should be represented, in order for the represen-
tation be as limited as possible. We do not claim to have the
optimal representation for every task; rather we claim that
under this paradigm an agent’s representation can be greatly
reduced (relative to a 3-D reconstruction and therefore eas-
ier to maintain) by considering the task at hand.

2.1. Markers

Representation in the effective field of view is com-
posed of small structures called markers. Markers represent
objects which are important to the agent’s current task.
They are generally thought to contain a ‘what’ and a
‘where’ component. The what component describes the
object’s role in the current task. For the task of escaping a
charging rhino, the jeep could be associated with a hiding-
place or escape-mode marker, while for the photographing
task, the jeep could be associated with an elevated-plat-
form marker. The where component describes the location
of the marked object in some local frame of reference.
Markers do not contain global, objective positions because
they are local-space representations describing an object’s
relationship to the current task. Our agent’s markers are
stored as polar coordinates, (r, θ), with the agent at the ori-
gin and the agent’s current body facing as the 0° azimuth.
Notational convention: throughout the rest of this paper we
will use the courier font, e.g. action, to indicate compo-
nents of markers, and bold-face, e.g. destination, to indi-
cate values of those components. Also, a phrase such as
hiding-place marker indicates a marker whose what com-
ponent is hiding-place.

Markers also contain an identity component which
contains information about the perceptual properties of
their associated objects. In section 5, we will see that mark-
ers can also contain an action component.

2.2. Marker Maintenance

Markers describe the location of task dependent
objects in relation to the agent. This section describes the
issues associated with keeping those positions up-to-date,
while details of how our agent performs these functions
appear in the next section.

The position of marked objects (the where component
of markers) must be kept up-to-date as the agent moves
throughout its environment and as the environment
changes. This is accomplished by compensation for ego-
motion and correspondence for objects in the absolute field
of view.

The identity component of a marker contains
information about the perceptual properties of the object
with which it is associated. The agent examines the abso-
lute field of view for properties of objects it expects to
appear there and computes new positions for the objects it
finds. The agent decides if a given object should be in view,

based on the object’s location (its where component), the
azimuth of the optic axis of the agent’s current absolute
field of view, and knowledge of the size of the absolute field
of view. Ego-motion transformations are applied to the
coordinates of all objects which the agent does not expect to
find in the absolute field of view [9]. In figure 1b, as the
agent moves toward the rhino, the rhino’s position is deter-
mined from the absolute field of view, while the jeep’s loca-
tion is calculated from ego-motion transforms.

We associate a confidence with each marker which is
expressed in a timer. When the agent detects an object asso-
ciated with a marker in its absolute field of view, the
marker’s timer is reset. Once this object moves outside the
absolute field of view, the timer begins to count down.
When the timer expires, the agent is alerted to re-direct its
absolute field of view in an attempt to relocate the object.
The timer can be thought of as the agent’s current confi-
dence that the position in the marker’s where component
is correct. The values of the timers will depend on the task.
So, when fleeing the rhino, the marker associated with the
rhino should have a short timer. Monitoring a group of tur-
tles would call for longer timers.

Effectively maintaining a set of markers involves valu-
ing perception over memory, because information derived
from perceptual input is more important in the tight sensor/
effector loop needed for autonomous action than informa-
tion stored in memory. For marker representations, one
form of this preference for immediate sensor information is
the dropping of any marker for which the agent expects to
find the associated object in the absolute field of view, but
does not. However, this policy must be amended to account
for occlusion. The agent must check if an object appears, in
the sensory stream, along the same azimuth as the marker,
but closer than the object associated with the marker. This
computation need only be performed when the agent
believes objects should be in the absolute field of view, but
their specific perceptual cues cannot be detected.

3. The Agent

We have constructed an autonomous agent which
inhabits a virtual world. Figure 2 shows a sample view of
the world, which consists of rocks, trees, berries and a pred-
ator. The agent’s task is to stay alive, by eating berries and
avoiding the predator. The agent is equipped with a “neck”,
which allows its absolute field of view to be panned inde-
pendent of its body heading. The agent is capable of esti-
mating its own motion based on the passage of time and
how it has previously decided to move. In this section, we
will describe the system architecture and the agent’s design
and implementation.



3.1. System Architecture

The system consists of a rendering process and an
agent control process. The rendering process creates time-
stamped color images from the agent’s point-of-view, such
as figure 2. These images are quantized, as in figure 3, and
transmitted to the control process. The rendered images are
the only data about the external environment available to
the agent. The control process consists of task agencies
which perform low-level visual routines on the images and
use the results to determine motion commands to send to
the rendering process.

Since the two processes are asynchronous, a non-deter-
ministic amount of time passes between when the control
process issues commands and the rendering process gener-
ates new views of the environment. The agent possesses a
neck angle sensor to detect when a given neck motion com-
mand has finished. This allows the agent to know from
which direction a given image was taken.

3.2. Agent Design

The agent is designed in a task-oriented manner. The
control process contains three “task agencies”, or control
entities which attempt to actively and/or opportunistically
direct the agent towards accomplishing its goals. The agen-
cies used by our agent are FORAGE, AVOID-OBSTA-
CLES and EVADE-PREDATOR. Each task agency
examines images from the rendering process for features
relevant to its task and outputs a “strength” indicating the
relative urgency of acting on the task it oversees.

FORAGE directs the agent toward berries (small red
blobs), by marking them in the image. The closest one is
then used as the agent’s destination. AVOID-OBSTACLES
protects the agent by keeping it from hitting obstacles.
AVOID-OBSTACLES marks the extent of objects which
constitute obstacles between the agent’s current location
and the agent’s destination. EVADE-PREDATOR tries to
keep the agent away from the predator. EVADE-PREDA-
TOR marks the predator (yellow areas above “jagged”

places in the groundline) and hiding places when trying to
escape.

The overall behavior of the agent emerges from the
interaction of the task agencies. The agencies communicate
via the markers they maintain. Consider the interaction pro-
ducing navigation toward a berry. Navigation requires a
destination (here, the location of a berry), indicated by a
marker and possibly associated obstacle markers (produced
by AVOID-OBSTACLES).

FORAGE establishes possible destinations, i.e. berries,
by associating a marker with an appropriate image feature.
Then, at regular intervals, FORAGE updates the estimated
positions of those destinations.

The destination’s estimated position is updated through
a “hypothesis and confirm (if possible)” process. The
hypothesis is created from the previous estimate and propri-
oceptive data, e.g. the most recent agent movement com-
mand and the current image time stamp. If the hypothesized
position should be visible in the current absolute field of
view, the agent looks for a correspondent in the current
image. If a correspondent can be found, the object’s image
position (based on its azimuth and elevation in the image
with the assumption that all objects lie on the ground), is
stored instead of its expected location. If the hypothesized
position should not be visible, or no correspondent is found,
then that position becomes the current estimate.

The agencies use the positions stored in the markers to
determine commands to send to the effectors. For example,
the agent determines the ground/non-ground boundary [17],
referred to here as the groundline, and indicated graphically
by a thick white line as in figure 3. AVOID-OBSTACLES
processes the groundline to determine possible obstacles. In
particular, when a destination marker is created (by FOR-
AGE or EVADE-PREDATOR), AVOID-OBSTACLES is
triggered to look for obstacles. If the destination is in the
absolute field of view, the agent’s direct path to that destina-
tion appears as a cone in the image with the destination at
its apex and the cone’s axis along the destination’s azimuth.
If any portion of the groundline falls within this cone, the

Figure 2. The Ag ent’s Envir onment

Figure 3. The Gr ound Line



object represented by that portion of the groundline is an
obstacle with respect to the current destination. In figure 4a,

the agent’s destination is relatively far away and its entire
path cone is unobstructed. Since there is no obstacle for this
path, the agent can proceed directly toward its destination
along this path. As FORAGE tracks the destination marker,
AVOID-OBSTACLES continues to determine if the path is
clear.

In figure 4b, however, the cone intersects the ground-
line, meaning that there is an obstacle[17]. In this case, the
agent will establish an intermediate goal based on the loca-
tion of left and right obstacle extent markers created by
AVOID-OBSTACLES.

Each agency can command the agent’s effectors, so a
means of resolving conflicting signals is necessary.
AVOID-OBSTACLES rarely conflicts with the other agen-
cies (unless the agent is very close to an obstacle). FOR-
AGE and EVADE-PREDATOR conflict for control of the
agent’s destination. FORAGE tries to steer the agent toward
berries, while EVADE-PREDATOR steers the agent away
from the predator. The agency with the higher output
strength (as measured by level of hunger and proximity of
predator) will control the agent’s destination. However,
cooperation can be achieved via the agent’s least-commit-
ment strategy. Since it is not necessary to run directly away
from the predator, EVADE-PREDATOR will allow FOR-
AGE to select a destination (berry) which is “generally”
away from the predator.

3.3. Agent Survival Behaviors

Two behaviors important to agent survival emerge
from the interaction of the task agencies. They are berry
gathering and predator avoidance. We will discuss each
behavior in turn, paying attention to the use of markers in
each behavior.

Berries give the agent energy. As the agent’s energy
ebbs lower, its hunger rises and likewise its desire for food.
FORAGE maintains markers on the four closest berries in
its effective field of view (reasons for the number 4 are
given in section 4). FORAGE selects the closest berry as
the agent’s destination. Since the closest berry is in the
effective field of view, it may be occluded or not currently
visible. If the berry is occluded, AVOID-OBSTACLES will

detect that the agent is heading for an obstacle, and the
agent will steer around it, as discussed in section 3.2.

Predator avoidance is central to agent survival. When a
predator is detected and is sufficiently close to be danger-
ous, the agent tries to escape. Escape proceeds through four
stages: looking for a place to run, running, looking for a
place to hide and hiding. The current stage is encoded in the
currently allocated markers, so the agent can back up a
stage or completely abandon the plan at any time, with no
additional mechanism.

An escape begins with detection of the predator by the
EVADE-PREDATOR agency. The agent has a series of
pseudo-markers placed around itself at regular intervals.
The timers on these markers are short, causing the agent to
glance around more often than is necessary for gathering
berries. We term these markers pseudo-markers because
they are not attached to any object, and are not maintained
as other markers. They provide cues to the agent that partic-
ular directions have not been scanned in a while.

A detected predator is marked by a marker with a short
timer, so that the agent closely monitors the predator’s loca-
tion. If the predator gets too close to the agent, the agent
begins its escape.

The first step is to determine a place to run. This is
done by evaluating each pseudo-marker in order to deter-
mine the best direction to run. As the agent runs, it must
keep looking back at the predator to verify the predator’s
location and check for serendipitous escape, i.e. predator
occlusion.

When the agent reaches its run destination, it must look
for places to hide. This proceeds by scanning the ground-
line for objects and computing a hiding-destination which
puts some object between the agent and the predator.

Finally, the agent navigates to the selected hiding
place. Once the agent has checked to be sure that the preda-
tor is occluded and sufficiently far away, the predator
marker will be dropped and the agent will cease trying to
escape.

The most important aspect of the predator escaping
behavior is how the current step of the escape plan is
encoded in the markers, and not kept in some internal pro-
gram counter. When a predator is marked, is close enough,
and is not occluded, the agent knows the predator is danger-
ous and it must look for a place to run. When the predator is
dangerous, and a search marker is allocated, the agent
knows it must evaluate the marker’s direction to find a place
to run. If the predator is dangerous and the agent has arrived
at the location designated by a run-destination marker, the
agent must look for a place to hide. When the agent reaches
a hide-destination, it must check to see if the predator is
still dangerous. If so, it must run more. Note the importance
of keeping an eye on the predator. The agent will believe

(a) (b)
Figure 4. Detecting an Obstacle



that the predator is dangerous if it was dangerous on the last
sighting.

4. Evaluation

In order to assess the advantages of marker based rep-
resentation, a number of performance measures are needed.
The first of these is inter-berry distance. We can say one
agent is more efficient than another if it travels a shorter
distance to collect the same number of berries. This means
that the average distance between berries is lower. Figure 5
shows the average inter-berry distances, on several runs, for

an agent with no markers, an agent with four markers and
an agent with four markers plus a neck (allowing the
agent’s view to change without changing the orientation of
its body). The error bars indicate 95% and 99% confidence
intervals.

The difference in performance between the agents with
markers and the markerless agent can be explained by the
fact that the markerless (reactive) agent does not remember
the location of close berries, which pass out of the absolute
field of view. The performance improvement afforded by
the neck is due to the fact that the agent glances around as it
collects berries. This expands its effective field of view,
allowing it to discover more, potentially closer, berries, as
well as berries which may be occluded until the agent is
past an obstacle (when the no-neck agent cannot look
back).

In order to assess the amount of representation needed
for this task, we evaluated inter-berry distance for seven dif-
ferent agent types (see figure 6). The first is a fixed neck
reactive agent (no scan). The others have functioning necks
and 1, 2, 3, 4 or 5 markers. These agents look around as
they gather berries to gain more information about the envi-
ronment. The “ideal” agent is omniscient in that it always
moves to the nearest berry (through obstacles if necessary)
and provides a lower-bound on the inter-berry distance.

Adding the ability to look around increases the perfor-
mance of the marker based agents over the fixed-neck
agent. Two markers provide increased performance over
only 1 marker. However, additional markers do not appear

to measurably effect performance. This is because markers
represent useful predicates in the agent’s berry gathering
“plan”. The two marker agent performs better than the one

marker agent because it already has a destination in mind,
once the current plan (to get the closest berry) completes.
The agent need not spend the time acquiring a new goal
berry. The problem with markers 3, 4, or 5 is that they are
useful to a plan which will not be executed until 2, 3 or 4
other berries are eaten. In a dynamic environment, planning
too far ahead is not useful as the environment will change
or new information will become available and invalidate
previous plans. So, the plans for which these markers are
useful are seldom executed.

A more complex evaluation criteria can be developed
by creating an “energy budget” for the agent. The agent’s
energy is increased for good behavior (eating berries) and
decreased for bad behavior (colliding with obstacles). We
consider an agent successful if it manages to maintain a
positive energy budget (0 energy constitutes death). A rest-
ing energy consumption was added so that the uninteresting
sitting-still behavior fails. We select parameters (berry
energy, collision penalty, etc.) such that all agents eventu-
ally run out of energy. Figure 7 shows the lifetimes of two

agents that are identical (perception processing, speed,
energy consumption, etc.), except for their use of markers.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

No Markers

Four Markers

Four Markers
 plus Neck

Figure 5. Average Inter-berry Distance

1.5

2

2.5

3

No Scan 1 2 3 4 5 Ideal

Figure 6. Increasing Performance via Marker Use

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
n

er
g

y 
L

ev
el

Simulation Time

No Markers

Four Markers

Figure 7. Energy vs. Time for Reactive
and Marker-based Agents



Each line represents the average of five runs with the differ-
ent environmental configurations.

The four marker agent knows about more berries
because it has a larger effective field of view than the reac-
tive agent. Also, the obstacle avoidance behavior which the
marker-based agent can use allows it to cleanly avoid obsta-
cles, while the reactive agent often collides with objects just
outside its absolute field of view, even though they have
been seen recently.

A final important evaluation involved the most
dynamic part of the environment, the predator. Measuring
the agent’s success at escaping was difficult because of the
problem of creating a reactive agent which could also
escape the predator. Memoryless agents are prohibited from
escaping by our previous definition, since hiding from the
predator requires an estimate of the predators location, even
when occluded. We therefore had to evaluate our agent
against a reactive agent with no predator avoidance strategy.
This agent will only “hide” if predator occlusion happens
by chance.

The metric we use to evaluate predator avoidance is
whether or not the agent manages to hide from the predator,
given that an “encounter” occurs. An encounter is defined
as a line of sight existing from the predator to the agent.
The encounter ends when the line of sight path becomes
obstructed (an “escape”) or the agent is caught (an “eat”).
Figure 8 shows the ratio of escapes to eats for the reactive

agent (chance escapes) and the marker-based agent (marker
escapes) for several runs of each agent. The mean for each
agent is shown by the dashed line. While better than the
reactive agent, the marker-based agent does get eaten. It can
fail to detect the predator, fail to find a place to run in time,
or fail to hide. However, the marker-based agent did escape
roughly 70% of its encounters, as opposed to 30% for the
reactive agent.

5. A Layered Agent Architecture

We have also implemented a perception/action system
as part of a layered agent architecture on a physical robot,
Bruce. Bruce is an MC68HC11 based robot possessing a

single color camera on a pan/tilt platform, front and side
tactile sensors, and shaft encoders on his wheels. Both
video and data transmitters are used as most processing is
performed “off-board”.

Bruce’s architecture consists of a planner layer (DL) at
the “top” level, a manager layer called the Task Executor
(TE) in the middle, and a perception/action (PA) layer using
the effective field of view at the “lowest” level. In this sec-
tion, we will describe how markers can be used as effective
communication primitives between the PA layer and the
TE. We will demonstrate this in terms of an implemented
application where our robot agent searches its environment
for its opponent in a game of tag.

The rules of the tag game are simple. Bruce must
search his environment for his opponent, a remote con-
trolled toy truck. Once the truck’s location is discovered,
Bruce must chase the truck and activate his tactile sensors
by touching the truck (a “tag”) before the truck reaches a
pre-defined “home-base”.

5.1. Markers for Layer Interaction

In the virtual world discussed in section 3, we
described the maintenance of markers by tracking their
associated objects. Obviously, there was some method by
which markers initially become associated with objects. We
have made this notion more formal by classifying markers
as instantiated or uninstantiated.

An instantiated marker is associated with some object
in the agent’s environment and is maintained as previously
discussed. An uninstantiated marker has not yet been asso-
ciated with an object and is treated somewhat differently.
Uninstantiated markers represent the agent’s expectations
about the environment, i.e. what objects will be where. This
information could come from a map, previous experience,
or an outside source (a human). In our system, the TE has a
map of the agent’s environment and can estimate the
agent’s current position on that map. Based on this location,
the TE can generate expectations about relative locations of
various objects with respect to the agent. These expecta-
tions can be used to drive the PA layer’s actions.

A round of tag proceeds as follows. The planner uses
its map of the environment to determine a search path such
that every point in the environment will eventually be in
Bruce’s absolute field of view [30]. An example plan is
shown in figure 9. The solid lines represent paths to travel,
while the dashed lines represent points where the agent
must turn its camera in the direction indicated by the arrow.
The agent is shown as a shaded pentagon with the point
indicating its direction of motion. The lightly shaded cone
indicates the agent’s absolute field of view. This plan is
passed to the TE for execution. Since we are primarily
interested in the communication between the TE and the PA
layer, the inner workings of the TE are not detailed here.

1 2 3 4 5
run

1 2 3 4 5
run

1

2

3

4

marker-based agentreactive agent
Figure 8. Escape Ratio for Two Agents



The TE guides the PA layer by creating uninstantiated
markers representing objects in the plan. Each of these
markers expresses a goal of the TE to the PA layer. By giv-
ing these markers appropriate action components (typi-
cally goto or look-at for this application), the PA layer can
perform the search task. .

5.2. Searching

To understand how uninstantiated markers are used by
the PA layer, we must first understand how markers become
instantiated, i.e. associated with an object in the world. The
where component of an uninstantiated marker represents
the TE’s estimate of the position of the object that the TE
wants the PA layer to associate with the marker. The PA
layer can maintain this position with proprioceptive data
just as it does with instantiated markers. When an uninstan-
tiated marker’s where component indicates that its stored

position should be within the absolute field of view, the PA
layer tries to find a correspondent for the marker using its
identity routine(s). If a correspondent is found, the
marker becomes associated with this object and is now con-
sidered instantiated.

Uninstantiated markers allow the PA layer to act on
information which it has not acquired in its effective field of
view. For example, figure 10a shows Bruce in the same
location as the agent indicated in figure 9 (near the end of
step 3). The white arrows indicate objects associated with
markers currently being maintained by the PA layer. Solid
arrows correspond to instantiated markers, while dashed
arrows correspond to uninstantiated markers. The lines
indicate Bruce’s absolute field of view.

Near the end of step 3, the PA layer has an instantiated
destination marker whose identity is b5 and whose
action is goto. At this point, Bruce’s current task is goto
destination, where the exact destination is designated by
this marker. The actual goto action is carried out by a set of
parallel “PA processes”, which are activated by the
action component of the marker. They are similar to the
task agencies used by the virtual agent. When Bruce com-
pletes step 3, the destination marker can be dropped. Now
the plan indicates that he needs to go toward object b3. The
TE will create a new destination marker whose iden-
tity is b3. However, b3 is outside of the current absolute
field of view and has never been associated with a marker
by the PA layer. Therefore, this destination marker is unin-
stantiated. Figure 10b shows the state of the PA layer’s
markers at this point.

Based on the TE’s estimate of b3’s position, Bruce
begins to move toward b3 (figure 10c). At some point, b3
comes within Bruce’s absolute field of view and the desti-
nation marker gets associated with it (see section 5.3). This
is shown in figure 10d. At this point, b3’s location would be
maintained in the marker even if b3 went outside of the
absolute field of view. The important aspects of this interac-
tion between the TE and the PA layer are that the effective
field of view allows the TE to not only provide goals to the
PA layer, such as goto b3, but to describe important objects
for which no sensory information is currently available.
Markers describe the objects that are important to the
agent’s current task and the action components of mark-
ers describe that task. This is a semantically appealing way
of expressing goals, as opposed to parameterizing a skill
network [12]. Also, markers allow the PA layer to begin the
goto b3 task based on a higher layer’s expectation and not
on sensor values. A traditional reactive system can select
actions based only on current sensory input, and so would
have no means of selecting appropriate actions to move
toward b3.

Another important consideration for our agent’s PA
layer is the number of markers that it can effectively main-

box

Figure 9. The Search Plan

can

b4b2

b5

home

b3

1

2

3

4

5
6

7

8

9

b1

10

(d)
Figure 10. Marker Instantiation

(a) (b)

(c)



tain, i.e. the number it can maintain at a “reasonable” rate.
The virtual agent is always maintaining between 5 and 9
markers (depending on whether it is avoiding an obstacle,
running from the predator, or just eating berries) These
markers are fixed because the agent’s task/environment dic-
tate that there will always be 4 closest berries, a predator,
etc. Also, since the virtual agent has no executor or plan-
ning layer, the PA system must maintain all the information
which the agent may ever need.

For the tag game, it is ineffective for the PA system to
try to maintain markers for all the objects that it will
encounter on its search route. For example, when the agent
is executing step 1 in figure 9, it does not need to know
about the position of object b2. In fact, the limited accuracy
of Bruce’s encoders and limited range of his camera make it
unlikely that he could successfully maintain the position of
b2 through the first 6 steps of the plan until he needed it.
For even more complex tasks than tag, in larger environ-
ments, it becomes clear that the PA layer can become over-
burdened with representation. However, the effective field
of view is meant to be a representation of local space, while
the higher layers of the architecture maintain “global”
information. The communication between the TE and the
PA layer allows the TE to have a hand in reconfiguring the
effective field of view’s representation over time.

5.3. Vision

Bruce’s vision system is similar to the vision system of
the virtual agent. Objects are segmented from the back-
ground by finding the groundline [17]. Sufficiently large
vertical discontinuities in this line represent the edges of
objects. The area between pairs of discontinuities is ana-
lyzed by the identity routines of the appropriate mark-
ers present in the PA layer. Bruce uses visual properties
such as color histogram matching [28] to identify objects.
Bruce’s collection of vision algorithms runs at approxi-
mately 15 frames per second on a Datacube MV200.

The constraints of real hardware further reinforce the
utility of having an effective field of view. The viewable
depth of any physical camera is intrinsically limited, so by
using markers the agent can continue to keep track of
objects which are not occluded and are still within the cam-
era angular field of view, but too far away to be clearly
identified.

6. Related Work

Ullman [32] uses the term “marking” to refer to
remembering locations and properties of previously ana-
lyzed portions of the visual field. Attneave and Farrar [4]
suggest that locations outside the visual field can be
marked. Pylyshyn describes a similar concept in his FINST
model [23].

Agre and Chapman [1][2] introduced deictic or “point-
ing” representation to reactive planning. Their Pengi system
played a video game by placing markers on the most task
relevant objects in the game, rather than exhaustively label-
ing all objects, as in the classical planning paradigm. These
markers then served as input to their reactive planning cir-
cuitry. Chapman addressed the problem at the level of inter-
mediate vision and did not attempt to address problems
such as occlusion and the underconstrained nature of early
vision. Also, markers were placed only on currently visible
objects and no memory of off-screen objects was retained.
More recently, Horswill [18] has made use of deictic repre-
sentations in a reactive robot.

Arkin’s AuRA system [3] contains the ability to instan-
tiate schemas when various sensory events occur, such as
the detection of a certain object. This capability is similar to
our instantiation of markers (and possible ensuing actions).
However, in his system, perceptual schema must be explic-
itly scheduled by the task designer. In our system, a marker
indicates that the appropriate perceptual routine should be
executed when the underlying system believes the object is
in sensor range. Also, there is no mention of updating the
world model once a perceptual schema has detected its fea-
tures. If the agent’s plan was interrupted after a perceptual
schema had run, and the agent had to do some other actions,
either the original perceptual schema would have to be run
again, or the agent would have to store the potential field
that the original schema computed. We would argue that the
object which caused the potential field should be stored,
rather than a field calculated on possibly old information.

Andrew McCallum [20] conducted experiments with
deictic representations in a virtual environment. He con-
structed a “go-cart” simulator for virtual driving to investi-
gate the role of deictic visual behaviors. His work is
primarily concerned with the use of the fovea as a marker
and the learning of the visual behaviors. Spatial memory is
limited to simple left-right distinctions, whereas we are
concerned with the maintenance of multiple markers indi-
cating locations with higher spatial resolution.

Other researchers, such as Terzopoulos and Rabie [31],
have attempted to create realistic simulated environments
inhabited by realistic agents possessing active perception
systems. It should be noted that while Terzopolous and
Rabie were attempting to model fish biology, it is our aim to
study the properties of the effective field of view, and not to
model any particular animal.

We believe that benefits of the effective field of view
paradigm and the use of markers as communication can be
realized within the contexts of a variety of different
approaches to agent architectures.

Maja Mataric developed the use of maps in a reactive
planning context [19]. Sonar sensors and a low-resolution
digital compass were used to identify landmarks and con-



struct a topological map of the environment. The map
enables the robot to navigate to locations in the environ-
ment as directed by a human. These maps are useful in nav-
igating large-scale space, but are fundamentally different
from the local-space representations that are the focus of
this research. The local-space markers are metric, in that
they identify the locations of objects relative to the agent in
a low-resolution coordinate system, whereas the Mataric
maps are primarily topological. Topological maps are use-
ful for navigating the large-scale space, while local repre-
sentations are useful for coping with the immediate
surroundings. In this way, the two representations are com-
plimentary. In using markers as a means of communication
between the perception/action layer and the task executor
layer of our three-layer architecture, we take advantage of
this complimentary relationship between these different
types of representation [33][34][35].

Lynn Stein expanded on Mataric’s work in her imagi-
nation architecture [27]. Mataric’s subsumption-based
agent Toto was enhanced with an “imagination” system
called MetaToto. While Toto was limited to mapping only
places it had actually sensed, MetaToto can provide Toto
with a rough “sketch map” (complete with appropriate
inputs to Toto’s sonar sensors) of locations it has not vis-
ited, and Toto will “imagine” travelling through it, adding
what it senses to its normal map just as if it were exploring
actual space. Toto can then be instructed to visit locations
that it added to its map in an “imagined” journey. Our work
is compatible with this concept because we are investigat-
ing the processing of sensory information into memory
structures. While the imagination architecture considers the
robot’s main architecture to be a “black box”, into which
the imagined sensory signals are fed, we are developing an
internal representation system for the “black box”.

Many researchers have investigated the integration of a
reactive system with a classical planner. The 3T architec-
ture [5][6] and the ATLANTIS architecture [14] both use
Firby’s RAP system [12][13] to interface a planner and a
reactive system. The reactive layers (analogous to our PA
layer) are composed of sets of “skills” which communicate
with each other and the upper layers using channels [14] or
shared memory [5][12]. Different RAPs enable and disable
sets of skills as needed. Since our work is concerned with
the level of the architecture “below” the RAP system, it
would be fairly straightforward to incorporate a PA system
similar to ours into this kind of architecture. In [5][6][14],
communication between different skills and between skills
and RAPs is unstructured and arbitrary. We have defined a
more structured communication mechanism between the
TE and PA layers via the passing of markers associated
with task-dependent roles. We believe that this interface
allows the effective exchange of important information
between behaviors or between behaviors and the upper lev-

els of an architecture. This gives the upper layers an effi-
cient and effective paradigm for instructing the PA layer.

Another approach to integrating deliberation and reac-
tion is the Task Control Architecture (TCA) [25]. In con-
trast to the RAP-based architectures, a top-down approach
is taken. The TCA paradigm of structured control is to start
with planned behavior that is expected to work correctly in
nominal situations, and then add reactive behaviors to deal
with exceptional situations. Reactive behaviors are typi-
cally used for tasks such as monitoring and exception han-
dling. Adding markers to these constructs would be useful
for certain tasks. For instance, a monitoring behavior that
caused an agent to follow an object upon detection could
make use of the effective field of view to handle situations
where the object becomes occluded.

The supervenience model of Spector and Hendler [26]
consists of a set of communicating levels in which lower
levels pass facts about the world to higher levels while
higher levels pass goals down to lower levels. Each level in
this architecture contains a knowledge base in the form of a
blackboard system, with each level having its own uniform
knowledge structures. In the implementation of superve-
nience described in [26] (called APE), the same knowledge
structures are used at all levels. We have presented the
marker as a knowledge structure for use by a PA layer. We
believe that the types of knowledge structures needed to
perform the tasks required of higher levels are different than
those that are usable by a PA layer in a dynamic environ-
ment. These “higher level” structures may contain more
information than can be effectively maintained by a PA
layer. It is important to design the knowledge structures of
the PA layer carefully so that the advantages of the knowl-
edge are obtained while real-time performance remains
robust.

Some other examples of agent architectures integrating
deliberation and a reactive system include [15] [16] [21]
[22] and [24].

7. Conclusions

We have described a concept called the effective field of
view, which effectively and efficiently integrates task-
dependent representation into perception/action systems. A
sensor’s effective field of view is different from what we
define as its absolute field of view, or the area which the
sensor can currently perceive. The effective field of view of
a sensor includes both its current absolute field of view and
some limited information about objects recently in view.
We have characterized this limited information in structures
called markers.

We have developed an agent with a simple neck-based
perception system. The current position of the neck defines
the agent’s absolute field of view, while representations col-



lected and maintained from recent positions of the neck
characterize the agent’s effective field of view.

The agent inhabits a dynamic world containing food,
obstacles and a predator. We have shown the effectiveness
of the effective field of view, for the survival task, by the
metrics of inter-berry distance, survival time, and predator
escapes. Further, we have shown that adding additional
markers to the effective field of view may not increase per-
formance. This supports our claim that representation for
objects outside the absolute field of view is important, but
that these representations must be minimalist in order that
their contribution to agent performance outweighs the cost
of their maintenance. We have also implemented a physical
agent which uses an effective field of view to play a game
of tag with a human controlled opponent.

The contribution of this work goes beyond the simple
fact that representation can improve performance. We have
described a system of representation and addressed the
problems of acquisition and maintenance for a real agent.
Further, our work has attempted to quantify the amount of
representation needed and the improvement gained by
using our form of representation, the effective field of view.
This is the only work known to the authors which has
attempted to quantify the performance of a system with rep-
resentation over a pure reactive system. The virtual agent
developed here is also the only known agent to have a reac-
tive system augmented with a representation scheme (and
no planner) which deals with the realistic problems of lim-
ited field of view and occlusion in 3D environments. Our
physical agent demonstrates that such a PA system can be
effectively used as part of a hierarchical layered architec-
ture. We have shown that markers and the effective field of
view form an effective means of communicating semanti-
cally meaningful goals between the PA layer and the execu-
tor layer.

The effective field of view of an agent’s perception sys-
tem is a useful conceptualization for autonomous systems.
It provides an agent’s perception/action system with access
to task dependent information outside the current sensory
“view”, extending the agent’s capabilities beyond those of
pure reactive agents.

8. References
1. Agre, P.E.; and Chapman, D. 1987. Pengi: An Implementation of

a Theory of Activity. AAAI-87: 268-272.
2. Agre, P.E. and Chapman, D. 1990. What Are Plans For?. Robot-

ics and Autonomous Systems 6: 17-34.
3. Arkin, R.C. 1987. AuRA: An Architecture for Vision-Based

Robot Navigation, DARPA Image Understanding Workshop, Los
Angeles, 417-431.

4. Attneave, F.; and Farrar, P. 1977. The Visual World Behind the
Head, American Journal of Psychology 90(4): 549-563.

5. Bonasso, R.P.; Firby, R.J.; Gat, E.; Kortenkamp, D.; Miller, D.P.;
and Slack, M.G. 1997. Experiences with an Architecture for
Intelligent, Reactive Agents. Journal of Experimental and Theo-
retical Artificial Intelligence 9(2):237-256.

6. Bonasso, R.P.; and Kortenkamp, D. 1995. Characterizing an
Architecture for Intelligent, Reactive Agents. AAAI Spring Sym-
posium. http://tommy.jsc.nasa.gov/er/er6/mrl/symposium.html.

7. Brill, F.Z. 1994. Perception and Action in a Dynamic Three-
Dimensional World, Proc. IEEE Workshop on Visual Behaviors:
60-67.

8. Brill, F.Z., Martin, W.N. and Olson, T.J. 1995. Markers Eluci-
dated and Applied in Local 3-Space. IEEE Symposium on Com-
puter Vision, November 1995: 49-54.

9. Brill, F.Z. 1996. Representation of Local Space in Perception/
Action Systems: Behaving Appropriately in Difficult Situations.
Ph.D. Dissertation, Department of Computer Science, University
of Virginia.

10. Brooks, R.A. 1986. A Robust Layered Control System for a
Mobile Robot, IEEE Journal of Robotics and Automation, RA-
2(1):14-23.

11. Brooks, R.A. 1991. Intelligence without Representation. Artifical
Intelligence 47: 139-159.

12. Firby, R.J.; and Slack, M.G. 1995. Task Execution: Interfacing to
Reactive Skill Networks. AAAI Spring Symposium. http://
tommy.jsc.nasa.gov/er/er6/mrl/symposium.html.

13. Firby, R.J. 1987. An Investigation into Reactive Planning in
Complex Domains. AAAI-87: 202-206.

14. Gat, E. 1992. Integrating Planning and Reacting in a Heteroge-
neous Asynchronous Architecture for Controlling Real-World
Mobile Robots. AAAI-92: 809-815.

15. Hayes-Roth, B. 1995. An Architecture for Intelligent Adaptive
Systems. Artificial Intelligence, 72: 329-365.

16. Hexmoor, H. H. 1995. Smarts are in the Architecture! AAAI
Spring Symposium. http://tommy.jsc.nasa.gov/er/er6/mrl/sympo-
sium.html.

17. Horswill, I. 1993. Polly: A Vision-Based Artificial Agent. AAAI-
93: 824-829.

18. Horswill, I. 1997. Real-time Control of Attention and Behavior
in a Logical Framework. In Proceedings of the First International
Conference on Autonomous Agents: 130-137.

19. Mataric, M.J. 1992. Integration of Representation Into Goal-
Driven Behavior-Based Robots. IEEE Transactions on Robotics
and Automation 8(3): 304-312.

20. McCallum, R.A. 1993. Overcoming Incomplete Perception with
Utile Distinction Memory. Proc. 10th International Machine
Learning Conference: 431-450.

21. Musliner, D. J.; Durfee, E.; and Shin, K. 1993. CIRCA: A Coop-
erative, Intelligent, Real-time Control Architecture. IEEE Trans-
actions on Systems, Man, and Cybernetics, 23(6):1561-1573.

22. Noreils, F.; and Chatila, R. 1995. Plan Execution Monitoring and
Control Architecture for Mobile Robots. IEEE Transactions on
Robotics and Automation 11(2): 255-266.

23. Pylyshyn, Z.W.; and Storm R.W. 1988. Tracking Multiple Inde-
pendent Targets: Evidence for a Parallel Tracking Mechanism.
Spatial Vision 3(3):179-197.



24. Sahota, M. 1994. Reactive Deliberation: An Architecture for
Real-time Intelligent Control in Dynamic Environments. AAAI-
94: 1303-1308.

25. Simmons, R. 1994. Structured Control for Autonomous Robots.
IEEE Transactions on Robotics and Automation, 10 (1): 34-43.

26. Spector, L.; and Hendler, J. 1992. Planning and Reacting Across
Supervenient Levels of Representation. International Journal of
Intelligent and Cooperative Information Systems1 (3 & 4):411-
449.

27. Stein, L.A. 1995. Imagination and Situated Cognition. Android
Epistemology. K.M. Ford, C. Glymour, and P.J. Haynes, eds.
AAAI Press/MIT Press. 167-182.

28. Swain, M.J.; and Ballard, D.H. 1991. Color Indexing. Interna-
tional Journal of Computer Vision 7(1): 11-32.

29. Tate, A.; Hendler, J.; and Drummond, M. 1990. A Review of AI
Planning Techniques, Readings in Planning, Allen, Hendler and
Tate ed., Morgan Kaufman: 26-49.

30. Taylor, C.J.; and Kriegman, D.J. 1994. Vision-Based Motion
Planning and Exploration Algorithms for Mobile Robots. Work-
shop on the Algorithmic Foundation of Robotics.

31. Terzopoulos, D. and Rabie, T.F. 1995. Animat Vision: Active
Vision in Artificial Animals. ICCV-95: 801-808.

32. Ullman, S. 1984. Visual Routines. Cognition 18:97-159.
33. Wasson, G.S. and Martin, W.N. 1996. Integration and Action in

Perception/Action Systems with Access to Non-Local Space
Information. AAAI-96 workshop, “Theories of Action, Planning
and Robot Control: Bridging the Gap”: 130-134.

34. Wasson, G.S., Ferrer, G.J. and Martin, W.N. 1997. Hide-and-
Seek: Effective Use of Memory in Perception/Action Systems.
First International Conference on Autonomous Agents. 492-493.

35. Wasson, G.S., Ferrer, G.J. and Martin, W.N. 1997. Systems for
Perception, Action and Effective Representation. FLAIRS-97
Track on Real-Time Planning and Reacting. 352-356.


