

Layered Mode Selection Logic for Unstructured Environments

Andrew B. WRIGHT, Traig BORN, Gabriel FERRER, and Ann M. WRIGHT

Abstract- Robots developed from the 60’s to the present have been

restricted to highly structured environments such as work cells or
automated guided vehicles, primarily to avoid harmful interactions
with humans. Next generation robots must function in unstructured
environments. Such robots must be fault tolerant to sensor and
manipulator failures, scalable in number of agents, and adaptable to
different robotic base platforms. Layered Mode Selection Logic
(LMSL), a robot-controller architecture, addresses these concerns.
The LMSL architecture has been implemented and tested on UALR’s
J5 robotics research platform. Objects are classified by acceleration
and force measurements. Collisions are detected, and objects are
classified by how difficult they are to push. J5 either avoids the
obstacles or manipulates them depending on this classification.
Comparable results are achieved with all sensors functioning, with
only the acceleration sensor (force sensor faulted), and with only the
force sensor (acceleration sensor faulted). A second demonstration of
the architecture addresses the problem of border security. A team of
autonomous robots are configured as a flexible sensor array. A one-
dimensional experiment using Lego robots shows that the robots
distribute themselves evenly along the border until an intruder
penetrates the border. The robots at the point of penetration cluster,
whereas the robots removed from the point of penetration remain
evenly distributed, albeit with a greater inter-robot separation.

Index Terms— Mode Selection Logic, Border Security, Fuzzy

Logic, Sensor Fusion, Fault Tolerance

1. INTRODUCTION

An important goal in robotics research is to design

robots capable of performing tasks in unstructured
environments. A sample unstructured environment is
shown in Fig. 1, where UALR’s J5 robot platform is
moving boxes with unknown mass. Such robots must be
scalable, fault tolerant, and capable of being upgraded
without requiring substantial redesign or recoding of the
controller structure. The aspect of the robot’s design
which most greatly influences its ability to satisfy these
requirements is the controller architecture.

 The world of robot controller architectures is a
spectrum with planners at one end and reactive systems at
the other. Reactive systems respond quickly to stimuli and
are inexpensive to implement; however, complex tasks are
difficult to achieve. Implementing a planner could require
a more expensive processor, but complex procedural tasks
may be accomplished.

Most planner controllers rely on a world model. The
world model is either preprogrammed or constructed at
run-time from sensory data. Actions are chosen based on

the state of the world model and predefined goals. This
approach allows the designer to explicitly define the tasks
and goals of the system. Planners work well in a
controlled environment such as an assembly line, where
the world model can either be pre-programmed or where
the sensor data can be validated.

In unstructured environments, the limitations of a
planner become apparent. Uncertainty in sensor data is
problematic. Faulty sensor data can cause an inaccurate
world model to be constructed, which interferes with the
planner’s ability to select an optimal course of action.
Planners have been criticized for their lack of scalability to
the complexity of real world tasks [1][2]. Planners are not
easily scalable to multi-agent systems, as the complexity of
the planner increases exponentially with additional agents.

Received on Oct. 8, 2007, revised on May 1, 2008. This paper is
extended from "Layered Mode Selection Logic Control for Border
Security" and "Layer Mode Selection Logic Control with Fuzzy
Sensor Fusion Networks" published at SPIE Defense and Security
Conference, Orlando, FL, USA, April, 2007.
T. Born and A. M. Wright are with Dept. of Physics, Hendrix College,
100 Washington Ave., Conway, AR, USA (e-mail: born@hendrix.edu
and wright@hendrix.edu); G. Ferrer is with the Dept. of Mathematics
and Computer Science, Hendrix College (email: ferrer@hendrix.edu)
and A. B. Wright is with Univ. of Ark. at Little Rock, 2801 S.
University Ave., Little Rock, AR, USA (e-mail: abwright@ualr.edu).

Fig. 1 J5 Robot Platform in Forward Collision Experiment

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 13, NO. 3, SEPTEMBER 2008, 162-177

Reactive systems use functions to map sensor inputs to
actuator outputs. Since no world model is maintained,
errors due to sensor inaccuracy do not accrue over time.
Reactive approaches have better computational efficiency,
but their inability to dynamically store data results in a lack
of optimality and goal convergence [2].

Hybrid control architectures combine features from
reactive systems and planner systems in an attempt to reap
the benefits of each, while minimizing their inherent
drawbacks. Previous work has investigated robot software
architectures for integrating planning and reactive systems
[3][4], as well as the application of fuzzy logic to these
problems [5]. The behavior-based controller architecture,
a specific example of such a hybrid, uses “basis behaviors”
as building blocks to achieve more complex functionality
[6]. A single basis behavior is reactive. When the robot
interacts with the environment and with other robots, the
higher level behavior that results is called an emergent
behavior. Behavior-based architectures have been shown
to be scalable to multi-robot systems [2].

Behavior-based controllers require a method for
combining the outputs of the basis behaviors. Pirjanian
gives an overview of methods used to combine behaviors,
which he calls “coordination mechanisms” [7].
Coordination mechanisms are divided into two categories:
arbitration methods and command fusion methods.

An arbitration method selects one behavior and gives it
complete control. Most arbitration methods produce
locally optimal decisions which may be globally non-
optimal. For example, a robot may be programmed to
follow a beacon, which is to the left of the robot, when an
obstacle is encountered. The obstacle avoidance behavior
directs the robot to avoid the obstacle by turning right.
The global goal of following the beacon would have been
better served by turning left to get around the obstacle.

Command fusion methods combine control signals from
multiple behaviors into a single command. When the
behaviors have conflicting goals, the combined command
signal from conflicting behaviors may result in a non-
optimal action. In the example of the robot avoiding an
obstacle while following a beacon, if the obstacle
avoidance behavior gives a right turn command and the
follow beacon behavior issues a left turn command, the
combined command would be to go straight, resulting in a
collision with the obstacle.

 Arkin, et al. described a “finite state machine” based
behavior coordination approach [8], which is based on
Brooks’s subsumption architecture [9]. In Arkin’s work, a
“sequence of perceptual algorithms” are developed
independently and combined in a finite state architecture
using transition conditions based on distinct robot sensory
perceptions. The Finite State Acceptor (FSA) that Arkin
uses to implement perceptual coordination defines multiple
operational states, including error states, and allows for
four exit conditions (normal, terminal, recoverable error,
fatal error). The states themselves are task-related, where
the tasks are associated with types of sensory input used in
the task (for instance, one state may use long-range

perception to perform a task such as beacon following,
while another state may use close range perception to
perform a task such as docking). The FSA does not use the
complexity of the task in the definition of the state, and the
implementation of the states may have significant overlap
in its procedures. It is possible in Arkin’s FSA for two
states to accomplish the same sub-task using different
procedures (e.g., obstacle avoidance may be used in both
long range motion and docking, but with a completely
different sensor set and implementation).

Brooks’s subsumption architecture is also state-based;
however, Brooks builds a concept of layering into the
architecture. Simple tasks are called “level 0” tasks and are
closely tied to direct actuator commands. “Level 1” tasks
(and higher) are built on top of the lower level tasks.
Brooks introduces the concept that task complexity can be
accomplished by building modules and layering them to
achieve increasingly complex tasks. Brooks’s states may
be at varying levels of complexity and are completely
independent, in the same way as Arkin’s states are.
Although Brooks introduces the concept of layering, it is
implemented by creating independent higher level
procedures, which subsume the lower level procedures by
inhibiting them. There is no overlap in function between
the higher level procedures and the lower level procedures.

Both Arkin’s and Brooks’s architectures present the
design graphically as a single layer. This complicates the
design effort, possibly introducing undesirable state
interaction effects, and results in a large number of
“building block” states which must be specifically
designed. The states are usually designed “to the task” (for
example, “wander” or “return to start”) rather than using
building blocks composed of primitive actions such as “go
forward” or “turn.” Both schemes envision implementation
through motor commands, rather than abstracting the
hardware from the control system design, and both
schemes use sensory input in the state algorithm, rather
than restricting sensory input to the transitions.

Brooks’s architecture is specifically designed to include
“scalability to task complexity” but includes this feature by

Functional Requirement Design Element
● Scalable to system
complexity
● Tolerant of manipulator
failure
● Allow for integration of
new modes

Mode Selection Logic

● Addition of manipulators Action layer
● Scalable to number of
robots Behavior layer

● Scalable to task complexity
Layered Mode
Selection Logic

● Addition of sensors
● Tolerant of sensor failure
and uncertainty.

Object Classifier such
as Fuzzy Sensor Fusion
Network

Table 1 Functional Requirements for LMSL

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 163

augmenting lower level control system designs with extra
states that are inherently more complex. The more complex
states tend to use more advanced sensory input. More
complex algorithms, such as “path plan,” can be used to
accommodate more complex tasks.

Both architectures demonstrate the power behind state-
based control schemes, especially to build failure
resolution into the design. Arkin’s FSA presents an elegant
formalism for a state-based controller with multiple
transitions; however, it lacks a clear means of layering.
States are presented at the same level of complexity (i.e. a
simple task might transition to a complex task) and the
tasks themselves are ad hoc.

1.1. Functional Requirements

 Every design task, including designing a robot that is

capable of performing useful tasks in an unstructured
environment, is facilitated by identifying the functional
requirements for the problem [10]. The functional
requirements must be generalized to allow for good
performance in any number of tasks or environments and
should be independent of each other. Each functional
requirement should be satisfied by a unique design element.

Brooks [9] presents elements which he calls “dogmatic
principles,” several of which are functional requirements,
others of which are philosophical principles which do not
affect design. The CAMPOUT architecture[11] also
determined several functional requirements which its
specification should fulfill.

Functional requirements are part of the design effort.
The Central Arkansas Mobile Robotics Consortium’s
(CAMRC) 1 functional requirements for a multi-agent
robot functioning in an unstructured environment are
summarized in Table 1. These requirements are
synthesized from those presented in [9] and [11].

1.1.1. Scalability to Robot Complexity

The specifics of a robot’s hardware often are embedded
in the controller architecture, causing the architecture to be
bound to a specific hardware configuration. Scalability to
robot complexity means that the same architecture may be
used to control robots of varying configuration. This
specification requires that the hardware (both sensors and
actuators) be abstracted from the architecture.

The robot must maintain functionality when non-critical
sensors or actuators fail. A minimal set of sensors and
manipulators are necessary for basic functionality.
Redundant sensors can be used for critical functions, so the
architecture should accommodate redundancy. Redundant
actions can be used for critical functions, so actuator
failures will not lead to system failure. The architecture
must accommodate ease of adding functions and ease of
inhibiting function when actuators have failed.

1 http://robotics.ualr.edu

1.1.2. Addition of Manipulators
The robot must allow for expandability. Advances in

sensor and actuator technology are frequent. Non-essential
sensors and actuators are added to allow for enhanced
capabilities. Hence, it is necessary for a robot to be capable
of integrating new technologies into its existing
infrastructure. The addition of the new hardware should
not require radical system redesign. The addition of new
procedures, which make use of the new hardware, should
not disrupt existing robot procedures.

1.1.3. Scalability to number of robots

Many of the tasks performed in an unstructured
environment can be done more effectively by a team of
robots. “Scalability to number of robots” means that the
architecture allows coordination of a group of robots
without exponentially increasing the complexity of the
control implementation.

1.1.4. Scalability to task complexity

“Scalability to task complexity” refers to the ability of
the architecture’s task specification language to allow for
simple or complex tasks to be defined. In an unstructured
environment, robots are required to perform tasks of
varying complexity. Specifications which are ad hoc do
not scale to task complexity, whereas specifications which
build complex routines from simple building blocks are.

1.1.5. Sensor integration and uncertainty

Modern sensors are precise and accurate under
controlled conditions. In unstructured environments
sensors are subject to disturbances which cause sensor data
to be noisy and imprecise. For a robot to perform well in
an unstructured environment, the architecture must
accommodate sensor noise and imprecision.

2. LAYERED MODE SELECTION LOGIC

CAMRC is developing an architecture, Layered Mode

Selection Logic, (LMSL) which is an implementation of a

Fig. 2. Generic Mode Selection Diagram

164 Wright et al: Layered Mode Selection Logic for Unstructured Environments

behavior-based controller that can follow a plan. The
architecture creates an abstraction layer for the robot’s
sensory inputs to classify objects in the environment
according to attributes that are relevant to the specific
problem and to classify events, such as a collision, by
setting or clearing a flag. It creates an abstraction layer for
the robot actuators through a reactive layer, called the
Action layer. Switching among Actions based on the
transitions of the discrete flags follows the rules of Mode
Selection Logic (MSL) [12].

2.1. Description of Mode Selection Logic Paradigm

Mode Selection Logic (MSL) was originally proposed

to control the Lycoming AGT1500 engine [13] in the
M1A2 tank. Its purpose was to define safe modes into
which the control system would default when sensors
failed. This paradigm was successfully implemented and
tested on UALR’s hybrid rocket motor [12].

MSL is similar to a Finite State Machine in that a
system has a finite number of states, which are called
modes. In each mode, rules are defined which govern the
system’s behavior. Well designed modes use a minimum
of sensory information to operate. Modes must be designed
so that they are independent of each other, allowing a
mode to be inserted or removed from the system without
affecting the operation of other modes.

Each mode has a predefined set of conditions which,
when satisfied, trigger the transition to another mode.
When an exit condition is satisfied a transition flag is set.
The MSL selects a new active mode based on which
transition flags are set and their priority level.

The sensory network contains all
of the sensor inputs into the system.
If sensors are used only to set
transition flags, then the modes
become open loop reactive
algorithms. In this ideal case, the
two aspects of control, sensing and
actuating, are decoupled. Integrating
new sensors affects only the sensory
network. Integrating new actuators
affects only the modes.

A Mode Selection Diagram
(MSD) is used to show a set of
modes and their transition flags (see
Fig. 2). Mode 0 is initially the
active mode (i.e. the entry mode).
Mode 0 will remain active until
either condition 0 or condition 1 is
set. If condition 0 is set then mode
1 will be selected as the active mode.
If condition 1 is set then mode 2
will be selected as the active mode.
A mode can have any number of
transition flags. The number in the
arrow indicates the priority of the
transition flag, so if both flags are

set, the higher priority mode will be entered.
MSL satisfies the functional requirement, “Scalability

to System Complexity” (see Table 1). In the hybrid rocket
problem, sensors and operational modes were added
without major recoding or debugging efforts. Since a
control failure on that system could result in an explosion,
software/hardware integration testing was emphasized in
the design phase.

For a specific problem, modes and transition conditions
must be defined that are relevant to the problem. The
modes should be made as independent as possible (not
necessarily requiring formal functional orthogonalization),
and sensor inputs should be confined to the transition
conditions. With these restrictions, it is straight-forward to
build a library of functions, from which more complicated
routines can be constructed, as described in section 2.2.

2.2. MSL as a Behavior Coordination Mechanism

Based on the work on gas turbine engine control and

hybrid rocket control, the original implementation of a
controller on the J5 robot platform (see Fig. 1) used the
MSL design. The first set of problems attempted required
that the functional activities be decomposed according to
the types of sensors used on the robot. A “Robot
Perception Hierarchy” was defined (see Fig. 3) wherein
the different sensors were classified according to their
response time, range, expense, and required computation.

Sensors which are close to the robot (such as touch
sensors or force sensors) or which sense robot-specific
information (wheel encoders or inertial sensors) support a
reactive control approach. Information update rates are

Fig. 3. Sensory Hierarchy for LMSL Architecture

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 165

very fast, and processing time to compute a reaction is
minimal. The information is immediate, but local.

Sensors which provide medium-range information
(laser range finder, ultrasonic sensor) provide more
information about the area in which the robot is
functioning. These sensors are more expensive and are
either updated slowly or require a larger investment in
computational resources. It is difficult to implement
meaningful behaviors without this group of sensors.

Sensors which provide long range information, such as
vision sensors, are very expensive and require dedicated
computational resources to extract useful informational
features. The update rates for these sensors are extremely
slow relative to the reactive sensors. Vision sensors rely on
ambient light or artificial light to function and are not
useful in its absence, so the information may be available
to the robot only for a portion of its operational time.

It became apparent that this layering of perception
would best be accommodated by a layered control
architecture. Since the Mode Selection Logic supported the
feature of adding complexity, it was decided to design the
minimal robot system and add complexity. This approach
gave rise to the concept of Layered Mode Selection Logic.

The first Behavior was built using a Mode Selection
Diagram (MSD), where each mode was a reactive function,
called an Action. The Action layer encapsulates basic robot
functions, such as forward, turn left, or actuate manipulator.
The Action layer modes provide hardware abstraction by
using a function library to execute the motor commands.
This method allows the same Action mode to be used on
robots with varied actuator sets. For example, a walking
robot and a wheeled robot will both have forward mode.
The abstraction facilitates integration of new hardware.

Once two behaviors were designed (Wander and Avoid)
using Action layer commands (go forward, random turn,
go backward) and timers to transition among the Actions,
it became necessary to choose a Behavior Coordination
Mechanism to transition among the Behaviors. The natural
method for transitioning among the Behaviors was to treat
each Behavior as a mode and to define sensor-based
transition flags. A recursion on the Mode Selection Logic
served as an arbitration mechanism (see Fig. 4).

At the Action layer, transitions were accomplished
either through timers or very low level sensors, such as

touch sensors. At the Behavior layer, more sophisticated
sensory input was required. In particular, a means of
detecting a collision was required to initiate a transition
from Wander to Avoid. Ultimately, force sensors and
wheel acceleration measurements were used to detect
collisions. However, ultrasonic sensors may be used to
initiate a transition from Wander to Avoid without
robot/object contact.

Once the first layering was accomplished, the different
classes of sensors could be accommodated at different
layers in the Layered Mode Selection Logic (LMSL)
hierarchy (see Fig. 3). An Activity layer was defined by
transitions among Behaviors, and a Goal layer was defined
by transitions among Activities. The main implementation
detail remaining was to develop a methodology whereby
timers, sensors, and mode monitors could initiate
transitions at the higher layers.

Planner-type problems could be accomplished at the
higher layers. In this respect, the LMSL architecture
represents a hybrid architecture. In fact, as more complex
problems were defined, the solution has been to add a layer.
The work which has been accomplished at the lower layers
does not need to be repeated for each new problem.
Therefore, the LMSL architecture addresses the functional
requirement, “Scalability to Complexity of Task.”

The current hierarchy which has been implemented on
UALR’s J5 robot contains the Action layer (reactive), the
Behavior layer, the Activity layer, and the Goal layer. For
more sophisticated problems, a Personality layer, which
switches among Goal layer modes is envisioned. The
implementation of the Action layer on J5 has been done
through a device driver, which accepts generic commands
from the operating system. This gives the added bonus that
specific controllers can be implemented through a data file
describing the Actions and transitions at each layer.
Implementing an increasingly complex controller on a
specific robot does not involve recompiling code, but
rather involves over-writing the data structure containing
modes and mode transitions.

Since controllers are designed by drawing Mode
Selection Diagrams, LMSL allows for top down goal
oriented group behavior design. Design tools based on
dropping and connecting predefined modes can be
accomplished through a straight-forward Graphical User

11
2

Action
mode1

Action
Mode

Action
Mode

1

1

2

Action
mode1

Action
Mode

Action
Mode

1

1

Behavior
Mode 1

Behavior
Mode 2

Fig. 4. Behavior Layer Mode Selection Diagram

166 Wright et al: Layered Mode Selection Logic for Unstructured Environments

Interface (GUI). This architecture supports graphical
monitoring tools to indicate what modes a particular robot
is in and to monitor the transition patterns.

If the hierarchy is implemented beginning with a
minimal set of critical modes, and adding functionality, the
architecture should provide inherent tolerance to actuator
failure, provided some method of self-diagnosing actuator
failure is implemented. If the new, non-essential actuator
or sensor fails, then the MSL can disable the modes that
require the new features by inhibiting transitions into those
modes. As non-essential actuators and sensors fail, the
controller collapses back to the minimal set of modes.

3. OBJECT CLASSIFICATION

When the robot interacts with its environment, the robot

must classify the objects encountered according to the
different reaction choices. Sensor data is presented to a
classifier whose output must be a discrete representation to
be used as a Transition Flag. Different methods of
classification exist in the literature. In particular, Neural
Network based Classifiers, Bayesian Classifiers [14][15],
and Fuzzy Logic Classifiers [16] have been used to
characterize objects based on sensory information. Since
Fuzzy Logic Classifiers allow multiple types of sensors to
be normalized and fused in a network and are linguistically
simple to implement, this option was chosen in preference
to more complicated approaches.

The current research indicates that objects must be
classified according to manipulability (how easily the robot
can move an object), traversability (how easily a robot can
climb over an object), avoidability (how easily a robot can
circumnavigate an object), and changeability (the
persistence of an object in the robot’s space).

3.1. Fuzzy Sensor Fusion Network

In unstructured environments, sensor data is imprecise.

Fuzzy logic is a type of set theory in which elements have
varying degrees of membership in a set (as opposed to the
standard binary type set theory where an element either
belongs to a set or does not belong) [17]. Partial set
membership facilitates the use of less exact definitions of
the input to output relationships. Therefore, fuzzy logic
improves fault tolerance to sensor imprecision.

A Fuzzy Sensor Fusion Network (FSFN) is a set of
membership functions, fuzzy inference rules, composition
rules, and defuzzification functions, which result in a
discrete flag associated with an object property or event.

In the FSFN shown in Fig. 5, sensor values are mapped
onto discrete variables rather than continuous outputs or
command signals. The discrete variables signify the
occurrence of an event, such as a collision. Each FSFN
can trigger multiple discrete variables.

The FSFN combines multiple sensors in a Fuzzy Rules
Matrix (FRM). The FRM may be designed to incorporate
redundant sensors to the setting of each transition flag. If a
sensor is not present or has failed, the transition flag will
still be updated due to the other sensors. Signal processing
algorithms to condition sensors can be incorporated in the
FSFN. The membership functions can be adjusted by
learning algorithms to improve the robot’s ability to adapt
to its environment [18][19][20].

A membership function, which is usually a piece-wise
continuous polynomial, determines the degree of
membership in a fuzzy set and is denoted

()xDOM ijij μ= , [] []iNjSi ,1,,1 ∈∈ , (1)

where the index, i, represents the sensor type, S is the
number of sensors in the network, the index, j, represents
the membership function applied to that sensor, and iN is
the number of membership functions assigned to that
sensor. The output of the membership function is a fuzzy

variable, which is normalized, []1,0∈ijDOM , where zero
represents that the sensor value has no membership in the
fuzzy variable and one means that the sensor value has
total membership in the fuzzy variable.

 The degree of memberships are combined in inference
rules using the fuzzy “AND” operator,

()BABA ,minimum=⊗ . (2)
where A and B are the outputs of membership functions.

The product notation is used to denote the combination
of many variables,

N
N

j j AAAA ⊗⊗⊗=∏ =
L211

 . (3)

An Inference Rule is a combination of fuzzy variables,
Spkjpjk DOMDOMDOMIR ⊗⊗⊗= LL 21 , (4)

Fig. 5. Preliminary Fuzzy Sensor Fusion Network

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 167

and the matrix formed by all of the inference rules is called
the Fuzzy Rules Matrix (FRM). The FRM is a multi-
dimensional matrix, whose dimensions are

SNNN ××× L21 .
Each event has two combination rules associated with it,

a contributor rule and a detractor rule. Determining
contributor and detractor rules involves experiments. A
simulation of the condition to be detected is created, and
the rules in the FRM are monitored through the experiment.
The inference rules which give detectable results when the
event occurs are selected for the contributor rule.
Inference rules which give detectable values when the
event is not occurring and non-detectable values (i.e.
signal-to-noise ratio between the rule and the noise floor is
very low) when the event is occurring are selected for the
detractor rules. Inference rules which give inconsistent
results are omitted from both rules. Inference rules are
combined using the fuzzy “OR” operator,

),(maximum BABA =⊕ , (5)
where the summation of many fuzzy “ORs” is denoted,

n
n

i i AAAA ⊕⊕⊕=∑ =
L211

 . (6)

If M specific Inference Rules from the FRM denoted by
equation (4) are the set

{ }
MMM PKJPKJPKJ IRIRIR LLL L ,,,

222111
 , (7)

then a contributor rule composed of C inference rules is

∑ =
=

C

i PKJ iii
IRCR

1 L , (8)

and a detractor rule composed of D inference rules is

∑ =
=

D

i PKJ iii
IRDR

1 L . (9)

In defuzzification, the contributor and detractor rules
are compared. If the value of the contributor rule is greater
than the value of the detractor rule, the detection flag is set.
Otherwise, it is clear.

4. LMSL APPLIED TO OBSTACLE HANDLING

In autonomous mobile robotics, obstacle avoidance
techniques are used for motion planning. In obstacle
avoidance, an algorithm steers the robot around obstacles
using sensors to locate and avoid the object. These
systems are designed to work in indoor environments and
safely share their workspace with humans. In obstacle
avoidance, it is assumed that the environment should not
be altered or that the robot is incapable of altering it, and
therefore the best way to handle obstacles is to go around
them. Situations exist where obstacle avoidance is not the
best choice, such as search and rescue, hazardous material
clean up, and battlefield reconnaissance. In these cases, it
is preferable that the robot is capable of handling obstacles
instead of avoiding them. Object handling may refer to
avoiding the obstacle, manipulating it, or traversing it.

Obstacle manipulation enables a robot to remove an
obstacle impeding its path and continue along an optimal
route to the objective. This behavior enhances the
navigational capabilities of the robot by allowing it to
choose a more direct route. In the case where all routes are
blocked by movable objects, it creates a solution that
would otherwise be unattainable. However, if the obstacle
is massive enough that manipulating it will cause excessive
drain to the batteries, then obstacle avoidance is a more
efficient course of action.

UALR’s J5 robot 2 was used in developing obstacle
avoidance and obstacle manipulation using the LMSL
architecture. J5 has a mass of 59 kg and is .75 m wide by 1
m long by .45 m tall (see Fig. 1). It has a robust
differential drive system powered by DC motors. The
drive axles have optical encoders. The control system
hardware consists of an AT motherboard and an x86
architecture processor and custom-built circuits for motor
control. J5 uses a 512 MB flash drive for non-volatile data
storage. The operating system is Mandrake 9.2 Linux. J5
has an articulated inclined plane, called the Wedge, located
on the front of the robot. The wedge has a strain gauge
bonded to its rear surface to provide force measurements.

2 http://theduchy.ualr.edu/txborn/

Fig. 6. Obstacle Avoidance Mode Selection Diagram

168 Wright et al: Layered Mode Selection Logic for Unstructured Environments

4.1. Behavior design

Obstacle avoidance was implemented using LMSL, and

manipulation was added after the avoidance MSD had been
debugged. In the obstacle avoidance behavior (see Fig. 6),
J5 enters the forward mode when initialization is complete.
It continues to move forward until a collision is detected.
If a collision is detected while in the forward mode, the
robot enters a stop, back up, and random turn sequence.
Once the random turn is complete, the robot returns to
forward mode.

To create the obstacle manipulation behavior, a new
action, “Push,” and a new transition flag, “Heavy
Obstacle,” were added to the avoidance behavior (see Fig.
7). This approach of creating more complex algorithms
without disturbing existing functionality is similar to
Brook’s subsumption architecture approach; however, the
level of complexity of manipulation in LMSL is at the
same layer as avoidance. The complete behavior will be
called handling, of which avoidance, manipulation, and
traversal are separate components.

In the obstacle manipulation behavior, a collision-
detection initiates a transition into push mode. The push
mode directs the robot to make a forward arcing turn. If a
heavy obstacle is detected while in either the forward or
push mode, the robot enters a stop, back up, and random
turn sequence. Once the random turn is complete, the
robot returns to forward mode.

4.2. Fuzzy sensor fusion network design

To implement avoidance and manipulation, a fuzzy

sensor fusion network to detect “collision” and “heavy
obstacle” had to be designed. Wheel acceleration derived
from the left and right wheel encoders were used to detect
a collision. The conditioned sensor value is processed by
three membership functions, each of which creates a
separate fuzzy variable (negative acceleration, zero
acceleration, positive acceleration).

The generic “negative” membership function is

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

<

=

xx

xxx
xx

xx
xx

x

max

maxmin
minmax

min

min

neg

0

1

1

μ .

(10)

The generic “positive” membership function is

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≤≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
<

=

xx

xxx
xx

xx
xx

x

max

maxmin
minmax

min

min

pos

1

0

μ .

(11)

The generic function for “zero” values is

() ()
()

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≤≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+−

−

<

=

xx

xxx
xx

xxx
xx

x

r

rl
lr

lr

l

zero

0

21

0

μ .

(12)

The outputs of these membership functions are
combined through a FRM to generate all possible
combinations of rules (in this case, two sensors, each of
which has three states, the matrix is 3 by 3, see Fig. 6),
and the inference rules are

kjjk DOMDOMIR 21 ⊗= , (13)

where { }131211 ,, DOMDOMDOM are the outputs from the
left acceleration sensor membership functions and
{ }232221 ,, DOMDOMDOM are the outputs from the right
acceleration membership functions.

Collision characterization experiments were conducted
and the output of the rules matrix was observed. The four
inference rules which were active prior to a collision and
after a collision, but were inactive during a collision, were
chosen as the collision detractor rules,

{ }32332322 ,,, IRIRIRIR .
(14)

Only one rule was active during a collision, but inactive
before and after it, and the collision contributor rule set
consists of the single rule,

{ }11IR . (15)

Fig. 7. Obstacle Manipulation Mode Selection Diagram

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 169

This FSFN is capable of detecting collisions, but due to
the nonlinearity of acceleration response it is not able to
reliably differentiate between different obstacle masses.
Tracking error in the velocity causes acceleration spikes,
which are erroneously detected as collisions. Force of
contact between the robot and the mass was added to the
inference rule set to correct these problems. The force
sensor has a linear response across a larger range of
obstacle masses. The contact force verifies that the
acceleration spike is due to a collision, not tracking error.

The force sensor has three membership functions (low
from equation 10, medium from equation 12, and high
from equation 11). Instead of creating a new rules matrix,
the existing 3x3 acceleration matrix outputs are combined
into a higher order 3x3x3 matrix with the force sensor.
The addition of the force sensor to the FSFN augmented
equation 13 to include the new DOMs.

lkjjkl DOMDOMDOMIR 321 ⊗⊗= , (16)

where { }333231 ,, DOMDOMDOM are the outputs from
the force membership functions.

The collision experiments were repeated and the output
of the fuzzy rules matrix was observed. The inference rule
set which comprises the Collision Detractor Rule becomes

{ }321331231221 ,,, IRIRIRIR , (17)
and the inference rule set which comprises the Collision
Contributor Rule becomes

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

333323

313233223213133123113

132122112312222212111

,
,,,,,,,
,,,,,,,

IRIR
IRIRIRIRIRIRIR
IRIRIRIRIRIRIR

.

(18)

The Push behavior required the Heavy Obstacle
Detected signal. Experiments showed that the Heavy
Obstacle Contributor rule should be composed of the
inference rules from equation 16,

⎭
⎬
⎫

⎩
⎨
⎧

333323313233

223213133123113

,,,
,,,,,

IRIRIRIR
IRIRIRIRIR

,
(19)

and the Heavy Obstacle Detractor rule should be composed
of the inference rule set

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

332322312232222212

132122112331321311

231221211131121111

,,,,,
,,,,,,
,,,,,,

IRIRIRIRIRIR
IRIRIRIRIRIR
IRIRIRIRIRIR

.

(20)

4.3. Manipulation Experiment

To test the Obstacle Identification FSFN, validation

experiments were conducted. The robot was placed on a
starting mark. A 30 kg rectangular obstacle was placed 75
cm in front of the robot perpendicular to the robot’s
direction of travel. A second 90 kg rectangular obstacle
was placed 75 cm behind the first (see Fig. 1). The robot
was directed to drive forward for 10 seconds at a velocity
of 26 cm/s.

At approximately 5 seconds, the robot collided with the
first obstacle, resulting in a negative acceleration spike and
a step increase in force (see Fig. 8). The robot pushed the
obstacle forward, until, at approximately 8 seconds, the
second collision occurred. A second negative acceleration
spike and a step increase in the force occurred.

The first collision is detected by the FSFN, but not
identified as a heavy obstacle (see Fig. 9). The forward
collision flag is set. The second collision triggers the
heavy obstacle flag (see Fig. 9).

4.4. Fault tolerance

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10

Fo
rc

e
(v

ol
ts

)

-75

0

75

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Ac
ce

le
ra

tio
n

(c
m

/s
^2

)

Fig. 8. Sensor response during manipulation experiment

170 Wright et al: Layered Mode Selection Logic for Unstructured Environments

 The collision detection capability of the FSFN is
inherently fault tolerant to sensor failure. The method used
in combining inference and composition rules allows for
the rules base to automatically reduce itself to a subset that
is not dependent on the faulted sensors.

4.4.1. Force Sensor Failure

If a force sensor fails, the most likely failure mode is a
sensor reading of zero. The zero force reading causes the
medium and high force membership functions to equal

zero ()0,0 3332 == DOMDOM and the low force

membership function to equal one ()131 =DOM . The
fuzzy AND operator in equation 16 causes

kjkjjk DOMDOMDOMDOMDOMIR 2131211 ⊗=⊗⊗= ,

032212 =⊗⊗= DOMDOMDOMIR kjjk , and

033213 =⊗⊗= DOMDOMDOMIR kjjk .
Applying these results to the Collision Detractor set,

equation 17 reduces to

{ }32332322 ,,, IRIRIRIR ,
(21)

and the Collision Contributor rule (equation 18) becomes
{ }11IR . (22)

Because medium and high force membership functions
are involved in all of the Heavy Obstacle Contributor
inference rules in equation 19, faulting the force sensor
reduces the contributor rules to a null set. The Heavy
Obstacle Detractor rule set reduces equation 20 to

⎭
⎬
⎫

⎩
⎨
⎧

33323123

2221131211

,,,
,,,,,

IRIRIRIR
IRIRIRIRIR

,
(23)

which contains all combinations of acceleration DOMs.
Since the acceleration membership functions overlap,

the value of the Detractor Rule will always be greater than
zero, and a comparison between the zero Contributor Rule
and the non-zero Detractor Rule will always result in the
Heavy Obstacle Detected flag being zero. With the force
sensor faulted, the augmented FSFN is equivalent to the
FSFN without the force sensor. Since the FSFN without
the force sensor could adequately detect collisions, and
therefore initiate transitions into the avoidance behavior,
but could not detect heavy obstacles and therefore initiate
transitions into the push behavior, the behavior with the
faulted force sensor degrades to the behavior of the system
that did not possess the force sensor.

Fault tolerance was verified experimentally by
disconnecting the force sensor and repeating the
manipulation experiment (see section 4.3). Collisions were
detected consistently, but heavy obstacles identification

Forward Collision

0

1

0 1 2 3 4 5 6 7 8 9 10

Detractor

Contributor

Forward Collision Flag

0 1 2 3 4 5 6 7 8 9 10

Heavy Obstacle

0

1

0 1 2 3 4 5 6 7 8 9 10

Detractor

Contributor

Heavy Obstacle Flag

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Fig. 9. Combination rules and flags during manipulation experiment

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 171

failed. A similar result occurs for each acceleration
measurement. The manipulation experiment was repeated
with the acceleration sensors faulted. Collisions were
detected consistently, and heavy obstacles identification
was successful.

5. LMSL APPLIED TO BORDER SECURITY

There are many applications that can be used to drive
the development and validation of a robot controller
architecture, such as Search and Rescue, Mine Sweeping
[21], and Planetary Exploration [22][23]. With the rising
tide of illegal immigration overlaid with terrorism threats
at home, the task of border security is becoming
increasingly important. Fixed walls or fixed security
monitors can be undermined, broken down, or evaded.
Manned patrols are costly and impractical. Technological
advances in the field of robotics may provide a flexible
sensor array which can enhance monitoring of the borders.

Table 2. Modes for border security

Behavior Activity Goal
Pursue More Flex Border Security
Capture Balance
Patrol Less Flex

A flexible sensor array refers to a team of mobile robots

carrying a sensor package, such as a thermal imager, which
can reliably detect a human signature. This array is spread
across a perimeter, and each robot attempts to maintain a
fixed distance with its neighboring robots, such that a
group of humans passing in the vicinity of the robots will
be sensed by the sensor package (see Fig. 10).

 As the signature moves towards the robots, the robots
are designed to move away from the border and to
maintain contact with the signature. Combined with the
array's rule of maintaining a fixed distance with its
neighbors, when one robot moves out of position, the

section of the sensor array will deform towards the interior.
This represents a detectable pattern, which either a human
border agent with a heads up display can monitor or which
algorithms can infer from robot positions and states. The
differences between an animal crossing the border versus a
mass of humans crossing the border can be distinguished.

Table 3. Transition Flags for border security

Flags Layer Source
Perimeter_Detected,

Intruder_Detected,
Intruder_Escaped

Activity FSFN

Long_Pursuit,
Short_Pursuit

Activity Timer

Low_Density,
Medium_Density,

High_Density

Goal Mode
Monitor

The implementation of border security using LMSL will

require Actions, Behaviors, Activities, and Goals to be
developed. The library of Activity layer modes and
Behavior layer modes for the general case (see Table 2) are
not yet fully developed. The Behaviors will be described
in terms of their desired outcomes.

FSFN’s that are capable of detecting boundaries, robots,
and intruders are required. The flags which will be needed
to implement the proposed border security scheme are
presented in Table 3.

The system will recognize two types of perimeters. The
perimeter that the team is assigned to guard is called the
Border Perimeter. A second perimeter, which serves as a
limit to keep the robots from dispersing too far is called the
Constraining Perimeter. The intersection of the Border
perimeter and the Constraining perimeter bounds a closed
domain (see Fig. 10).

5.1. Behavior layer modes

In the Patrol behavior, robots are directed to maintain a

centroid of distance between themselves and neighboring
robots. The robots are attracted to the Border perimeter and
may not cross the Constraining perimeter. The
combination of these two rules results in the robots settling
into a pattern along the Border perimeter with a more or

Fig. 10. Definition of Perimeters

Fig. 11. Less Flex Activity MSD

172 Wright et al: Layered Mode Selection Logic for Unstructured Environments

less fixed spacing among themselves, depending on the
terrain, number of robots, and length of the Border
perimeter (see Fig. 10).

If a thermal or visual signature representative of a
possible human is detected, the Capture behavior directs
the robot to maintain a fixed distance from an intruder.
While in Capture behavior, the presence of other robots is
ignored and the Border perimeter attraction is ignored;
however, the Constraining Perimeter may not be crossed.

If a robot loses the signature from the intruder, it may
enter the Pursue behavior. This behavior directs the robot
to move in the direction of the last known heading of the
intruder. Other robots are ignored. The Border Perimeter
attraction is ignored, and the Constraining Perimeter
remains in effect.

5.2. Transition flags

The transition flags for the Activity layer are

Intruder_Detected, Intruder_Escaped, Perimeter_Detected,
Short_Pursuit, and Long_Pursuit (see Table 3).
Intruder_Detected indicates that a potential human has
been encountered. The Intruder_Detected flag may be
generated by a FSFN using an array of complimentary
sensors such as vision and thermal imager.

The Intruder_Escaped flag is triggered when the robot
loses sight of the intruder. This flag is only triggered after
an intruder has been detected. Perimeter_Detected
indicates that the robot is nearing a Perimeter. At the
Activity Layer no distinction is made between Border and
Constraining perimeters. The Short_Pusuit and
Long_Pursuit flags are set by timers, which start when the
robot enters the Pursuit mode.

5.3. Activity layer modes

In the Less_Flex activity, the robot favors the Patrol

behavior (see Fig. 11). The initial state of the robot is the
Patrol behavior. If an intruder is detected, the robot enters
the Capture behavior. The robot returns to Patrol behavior
when either the intruder escapes or the robot encounters
the Border perimeter or the Constraining perimeter. In
Less_Flex, the robot does not pursue an intruder, which
minimizes the robot’s displacement from the border.

In the Balance activity (see Fig. 12), the robot gives
equal treatment to Pursue and Patrol. The robot begins in
Patrol behavior. When an intruder is detected, the robot

enters the Capture behavior. If the Border perimeter or the
Constraining perimeter is encountered while the robot has
the intruder captured, the robot will not cross either
perimeter, but will return to Patrol behavior. If the intruder
escapes and no perimeter is detected, the robot will Pursue.
While in Pursue behavior, if an intruder is detected, the
robot will return to Capture. While in Pursue behavior, if a
perimeter is encountered or the short pursuit timer expires,
then the robot will return to Patrol.

In the More Flex activity the robot prioritizes the Pursue
behavior (see Fig. 14). The MSD for More Flex is similar
to the Balance mode MSD. Instead of the short pursuit
timer, a long pursuit timer is used. This gives the robot
more time to reacquire its target before returning to Patrol.

5.4. Goal Layer

The Goal Layer, Border Security, is operating on each

robot; however, the inputs to generate transition flags are
initiated by a combination of intruder detection from the
team of robots. The Border Security goal (see Fig. 13)
transitions among the Activities, “Balance,” “More Flex,”
and “Less Flex.”

The purpose of the Border Security goal is to keep the
robot formation dispersed without losing the integrity of
the patrolled border. This dispersion allows a minimum
number of robots to adequately monitor an area. It will
vary with the intruder density. When more intruders are

Fig. 12. Balance Activity MSD

Fig. 14. More Flex MSD

Fig. 13. Border Security Goal MSD

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 173

present, the robots guarding that section must be more
concentrated to track them. When fewer intruders are
present, the formation can be more dispersed.

The Low_Density, Medium_Density, High_Density
intermediate flags used in the Border Security goal are
determined by a Mode Monitor. Each robot monitors the
Behavior layer state of its near neighbors. The more near
neighbors who are in the Capture or Pursue behaviors, the
more intruders are present in the robot’s vicinity. This
value is a continuous variable that is fed into a FSFN to set
the “High_Density” and “Low_Density” intermediate flags.
More robots in Patrol behavior would indicate that few
intruders are being detected and therefore this section of
border has a low intruder density. This value is fed into a
FSFN to determine the “Low_Density” intermediate flag.

Initially all robots are in the Balance activity. When the
“Low_Density” intermediate flag is set, the Activity is
switched to “More Flex” which allows the robots to
disperse over a wider territory. This activity should be the
normal Activity in which the flexible sensor array remains
when no intruders are present.

If the robots begin to detect intruders, the “Medium
Density” flag will be set. If the number of intruders is large,
both the “Medium Density” and “High Density” flags will
be set. Once the “Medium Density” flag is set, the Activity
switches to Balance, which decreases the amount of time in
which the robot will remain in the Pursue behavior upon
losing contact with an intruder. The likelihood that robots
will remain in position increases, as each robot passes off
an intruder to its near neighbors. The overall sensor array
flexes in the direction of the intruders due to the Capture
and Pursue behaviors of the robots actively engaged with
intruders. The neighbors of these robots also adjust their
positions, since the Patrol behavior requires them to
maintain a centroidal distance with their near neighbors.

In the event of mass intrusion, the “High Density” flag
will be set, which will transition robots into the “Less
Flex” activity. In “Less Flex,” robots may Patrol or
Capture, but may not Pursue. This tightens the sensor grid
in the vicinity of a mass crossing.

As the intruder density decreases (either because the
intruders return across the Border perimeter or because the

have crossed the Constraining perimeter), the “Low
Density” flag will be set, and robots return to the “More
Flex” activity. The attraction of the Border perimeter will
eventually return the flexible sensor array to its original
configuration along the border.

Because the robots are sharing information about
intruder contacts, at the point of many contacts, the robots
will have the “High Density” flag set. Away from the
contacts, robots who are not engaged with intruders will
still have the “Medium Density” flag set.

The current prototype implementation of the Border
Security goal is discretized into three Activities. If this
proves to be too coarse a discretization, additional
Activities (for instance “Even More Flex” and “Ludicrous
Flex”) can be added to improve performance.

5.5. Behavior Prototype Experiment

A prototype border security behavior has been

developed and tested. The general border security problem
was simplified for the prototype system. This prototype
behavior exhibited emergent behaviors which support its
ability to maintain a secure perimeter.

The border region was simplified by reducing it to a
single dimension. A one dimensional border allows for
straightforward control of the orientation of the robots
during interactions. The types of interactions are reduced
by combining robot and perimeter detections into a single
type called a boundary detection. All other interactions are
considered intruders. These interactions can be detected
by using a simple set of sensors.

The prototype behavior was tested using Lego robots
(see Fig. 15). The robots use a pair of light sensors on
either side to detect boundaries. A boundary is designated
by a white boundary identifier. Each robot has a boundary
identifier on both sides such that when it interfaces with
the other robots they detect each other as boundaries.
Similar boundary identifiers are located at the limits of the
perimeter.

Fig. 15. Lego border security robot
Fig. 16. One Dimensional border security MSD

174 Wright et al: Layered Mode Selection Logic for Unstructured Environments

The robots use a pair of touch sensors to detect
intruders. The touch sensors are oriented such that when
the robots interact, the light sensor will allow them to
identify each other before the touch sensor is activated.
Any non-boundary detected is considered an intruder. A
block of wood served as an intruder in this experiment.

The prototype MSD (see Fig. 16) is an implementation
of the Balance activity (see Fig. 12). The general
behaviors (Patrol, Pursue, and Capture) are made specific
by adding left and right directions to them. The boundary
detected transition flags are also made specific by the
addition of a direction (Left Boundary, Right Boundary).
The Long Pursuit and Short Pursuit intermediate flags
from the general case were omitted for simplification.

Each robot begins one of the two Patrol modes. While
in Patrol, the robot travels in the specified direction (left or
right) until one of two events occur:

1. A light sensor detects a boundary (another robot or a
perimeter). A transition to the complementary patrol mode
is initiated, causing the robot to move away from the
boundary. In the absence of intruders the robot will cycle
between Patrol Left and Patrol Right modes.

2. A touch sensor indicates the presence of an
intruder. A transition into the Capture mode corresponding
to the left or right touch sensor is initiated. While in
Capture mode, the robot maintains a fixed distance to the
intruder. The distance is limited by the range of the sensor.
Since a touch sensor is used in this experiment, the range is
zero, and the robot will stay in contact with the intruder.

When the touch sensor is released, the Intruder Escaped
flag is set, causing the robot to transition into the

corresponding Pursue mode. It pursues in the same
direction it had been patrolling when it performed the
capture. The robot will remain in Pursue until the intruder
is recaptured or a boundary is encountered.

Two robots running the prototype behavior were placed
in a 2.25 meter track (see Fig. 17). The position of the
center of each robot was measured at 0.5 second intervals
using a video capture software called LoggerPro. A single
stationary intruder was inserted at various positions on the
track. Three distinct emergent behaviors were observed:

1. When no intruders were present, the robots patrolled
the entire perimeter (see Fig. 18). The emergent behavior
shows that the formation will uniformly distribute itself
within the bounded region. In Fig. 18, each robot
oscillates towards the center position. When it encounters
the other robot, it changes direction until it encounters the
boundary.

2. When an intruder was placed between the robots, the
robots captured the intruder from both sides (see Fig. 19).
The emergent behavior shows that the robots will converge
on an intruder, but leave the border un-patrolled. The
spacing between the robots at 10 seconds is the width of
the intruder plus one robot width.

3. When an intruder was placed on the outside of either
robot, the robot nearest the intruder captured it while the
neighboring robot patrolled the area that the capturing
robot no longer visited (see Fig. 20). This emergent
behavior shows that the formation will adapt to the
presence of intruders.
 When no intruders are present, every position along the
patrol border should be visited an equal amount of time by
at least one robot. When an intruder is captured, one or

Fig. 17. Border Security Robots in One Dimensional Border

Fig. 18. No intruder; patrol behavior.

Patrol 1: No intruder

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

Time (seconds)

Po
si

tio
n

(m
)

Robot 1

Robot 2

Fig. 19. Intruder in middle; capture behavior.

Patrol 2: intruder in middle

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

Time (s)

Tr
ac

k
Po

si
tio

n
(m

)

robot 1
robot 2

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 175

both robots will stay at the intruder’s location until given
further instructions. As a result, the rest of the patrol area
may be covered less frequently or not at all.
 The percentage of time each location of the track is
covered by a robot during the trials graphed in Figures 18-
20 is shown in Fig. 21. The track was split into six bins,
each 40 cm wide. The bin width was selected to be slightly
larger than the width of one robot. For each track position
bin, the amount of time that the bin was occupied by a
robot was recorded and a percentage of total time was
calculated. Given a sufficiently long running time, this
graph will have a flat line if no intruders are present, or a
peak at the location of an intruder. This graph can be used
to set a threshold value, based only on the position of the
robot, to determine whether an intruder is present and what
its location is. If the percentage peaks above that threshold
value, the human controller can be alerted that an intruder
is present at a specified location. The controller may then
elect to send out new instructions. This information may be
used at the Goal Layer to adjust the number of robots in the
vicinity of the intruder to adjust their Activity setting.

CONCLUSIONS
The LMSL architecture has been implemented and

tested on UALR’s J5 robot. It has been verified that
certain functional requirements were satisfied. The ability
to incorporate new sensors into an existing infrastructure
was verified by adding the force sensor into the
Obstacle_ID FSFN after a preliminary FSFN was built
using only acceleration. The ability to incorporate new
modes was verified by adding the pushing mode to the
obstacle avoidance behavior to create the obstacle
manipulation behavior. The fault tolerance of the FSFN to
sensor failure has been verified experimentally for both
acceleration and force sensors.

An application to Border Security was phrased in the
LMSL paradigm. The Behavior, Activity, and Goal Mode
Selection Diagrams have been developed. A one-
dimensional prototype was implemented in hardware, and
emergent behaviors consistent with the Border Security
design have been observed.

FUTURE WORK
The formalism of the Layered Mode Selection Logic

and it application to cooperative mobile robotics problems
is in an early stage of development. The CAMRC has
defined many of the routines for implementation, but is
still developing the functional requirements and the
algorithms to respond to those requirements. CAMRC has
begun work on a Matlab based Graphical User Interface
for writing the tables used in the layers in the MSL. It is
developing object classification algorithms from sensor
inputs to determine appropriate transition flags. It is
developing a library of debugged Actions, Behaviors,
Activities, and Goals to be used in the GUI to enhance the
design effort.

The border security is being transitioned to a two
dimensional verification of the algorithms, using a small
robot based on the Vex microcontroller.

Although the LMSL should provide tolerance to
actuator failures, this feature has not yet been tested, since
current robots used in this work do not have redundant
features. The movable wedge on the J5 robot platform will
allow us to explore traversability of some terrain. When
this feature has been activated, the concept of actuator
failure will be explored.

Additional quantification of fault tolerance to sensor
failures is being developed by adding ultrasonic sensors to
augment the touch sensor with a non-contact collision
detection. This sensor provides a much more dramatic
difference between sensor types and will make for a more
thorough test of this feature.

ACKNOWLEDGEMENT
This work was supported by Arkansas Space Grant

Consortium, NASA grant number NCC5-260, and
University of Arkansas at Little Rock College of
Engineering and Information Technology.

The authors acknowledge Armand Tomany for the
mechanical design and fabrication of the original J5 robot.
Mr. Tomany performed this design work as part of his

Percent Track Coverage

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 0.5 1 1.5 2

Track Position (m)

%
 c

ov
er

ag
e

no intruder

intruder in middle

intruder on left

Fig. 21. Percentage of time that a track location is covered.

Patrol 3: Intruder on left

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40

Time (s)

Po
si

tio
n

(m
)

Robot 1
Robot 2

Fig. 20. Intruder on left; capture behavior.

176 Wright et al: Layered Mode Selection Logic for Unstructured Environments

Mechanical Engineering Technology senior design project
in conjunction with the 2001 FIRST Robotics Competition.

REFERENCES
[1] Mataric, M. “Behavior-Based Control: Examples from Navigation,

Learning, and Group Behavior”, Journal of Experimental &
Theoretical Artificial Intelligence, Vol. 9, 1997, pp. 323-336.

[2] Zielinski, C. “Reactive Robot Control Applied to Acquiring Moving
Objects”, Proceedings of The 3rd International Symposium on
Methods and Models in Automation and Robotics, Vol. 3, 1996, pp.
893–898.

[3] Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P.,
Slack, M. G., “Experiences with an Architecture for Intelligent,
Reactive Agents”, Journal of Experimental & Theoretical Artificial
Intelligence, 1997.

[4] Brill, F. Z., Wasson, G. S., Ferrer, G. J., and Martin, W. N. "The
Effective Field of View Paradigm: Adding Representation to a
Reactive System", Engineering Applications of Artificial Intelligence,
Vol. 11, 1998, pp. 189-201.

[5] Driankov, D. and Saffiotti, A. (Eds), Fuzzy Logic Techniques for
Autonomous Vehicle Navigation, Springer-Verlag, 2001.

[6] Arkin, R. C., Behavior-based Robotics, The MIT Press, Cambridge,
MA, 1998.

[7] Pirjanian, P. “Behavior Coordination Mechanisms State of the Art”,
Institute for Robotics and Intelligent Systems University of Southern
California Tech Report, IRIS-99-375, 1999.

[8] Arkin, R. C., MacKenzie, D., “Temporal Coordination of Perceptual
Algorithms for Mobile Robot Navigation,” IEEE Transactions on
Robotics and Automation, Vol. 10, No. 3, 1994, pp. 276-286.

[9] Brooks, R., “A robust layered control system for a mobile robot,”
IEEE Trans. on Robotics and Automation, v. 2, n. 1, 1986, pp. 14-23.

[10] Suh, N. The Principles of Design, Oxford University Press, 1990.
[11] Pirjanian, P., Huntsberger, T. L., Trebi-Ollennu, A., Aghazarian, H.,

Das, H., Joshi, S. S., Schenker, P. S., CAMPOUT: A Control
Architecture3 for Multi-robot Planetary Outposts,” Proceedings of
SPIE 2000, Sensor Fusion and Decentralized Control in Robotic
Systems III, v. 4196, pp. 221-230.

[12] Wright, A., Teague, W., Wright, A., Wilson, E. “Instrumentation of
UALR Labscale Hybrid Rocket Motor”, Proc. of SPIE Sensors for
Propulsion Meas. Appl., Vol. 6222, 2006, No. 622202, pp. 1-12.

[13] Ericksen, J., Godere, E., Wright, A., "Digital Controller Improves
Power and Flexibility of Gas Turbine Driven M1A1 Tank," IGTI
Publication 91-GT-295, 1991.

[14] Thrun, S., “Bayesian landmark learning for mobile robot
localization,” Mach. Learning, vol. 33, no. 1, 1998, pp. 41-76.

[15] Vandapel, N., Huber, D. E., Kapuria, A., and Hebert, M., “Natural
Terrain Classification using 3-D Ladar Data,” Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA April 2004.

[16] Jagielska, I., Matthews, C., Whitfort, T., ”An investigation into the
application of neural networks, fuzzy logic, genetic algorithms, and
rough sets to automated knowledge acquisition for classification
problems,” Neurocomputing, Vol. 24, 1999, pp. 37-54.

[17] Passino, K. M., Yurkovich, S., Fuzzy Control, Addison Wesley
Longman, 1998.

[18] Berenji, H. R., Khedkar, P., “Learning and Tuning Fuzzy Logic
Controllers through Reinforcements,” IEEE Trans. On Neural
Networks, Vol. 3, No. 5, 1992, pp. 724-740.

[19] Lin, C. T. and Lee, C. S. G., "Reinforcement structure/parameter
learning for neural-network-based fuzzy logic control systems," IEEE
Trans. Fuzzy Systems, Vol. 2, No. 1, 1994, pp. 46-63.

[20] Ye, C., Yung, N. H. C., and Wang, D. W., "A fuzzy controller with
supervised learning assisted reinforcement learning algorithm for
obstacle avoidance," IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics, Vol. 33, No. 1, 2003, pp. 17-27.

[21] Ulam, P., Endo, Y., Wagner, A., and Arkin, R. “Integrated mission
specification and task allocation for robot teams-testing and
evaluation,” Georgia Inst. Tech., Tech Rep. GIT-GVU-07_02, 2007.

[22] Howard, A., Seraji, H., Tunstel, E., “A Rules-Based Fuzzy
Traversability Index for Mobile Robots,” Proc. 2001 IEEE Intl.
Conference on Robotics and Automation, 2001, Seoul, Korea.

[23] Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D.,
Aghazarian, H., Ganino, A. J., Garrett, M., Joshi, S. S., Schenker, P.
S., “CAMPOUT: A Control Architecture for Tightly Coupled
Coordination of Multirobot Systems for Planetary Surface
Exploration,” IEEE Transaction on Systems Man and Cybernetics
Part A Systems and Humans, 2003, Vol. 33, pp. 550-559.

Andrew Wright received his BS in
Mechanical Engineering from the
University of South Carolina in 1982, his
MS in Mechanical Engineering from the
Massachusetts Institute of Technology in
1988, and his PhD in Mechanical
Engineering from Rensselaer Polytechnic
Institute in 1996. He is an Associate
Professor in the Department of Applied

Science at the University of Arkansas at Little Rock. From
1988-1992 he worked at Textron Lycoming, developing
control algorithms for gas turbine engines. Dr. Wright
mentored FIRST Team Number 356 from its inception in
2000 until the present, and has designed many robots and
robotic mechanisms in conjunction with this endeavor. Dr.
Wright is a member of ASME, the Acoustical Society of
America, Tau Beta Pi, and Phi Beta Kappa.

Traig Born received his BS in Systems
Engineering at the University of Arkansas
at Little Rock in 2002 and his MS in
Applied Science in 2008. He was a
mentor on FIRST Team 356 from 2000 to
2006. He is employed at Hendrix College

as the Lab Manager in the department of Physics. His
research interests include robot design and control systems.

Gabriel J. Ferrer is an Associate
Professor of Computer Science at
Hendrix College. He received his BA
in Computer Science from Rice
University in 1994, and his MS and
PhD in Computer Science from the
University of Virginia in 1996 and
2002 respectively. He is developing
automated software verification

algorithms, mobile robot planning algorithms, and mobile
robot software architectures.

Ann Wright is an Associate Professor
and Chair of the Department of Physics
at Hendrix College in Conway, AR.
She received her BS from the
Massachusetts Institute of Technology
in 1991, and her PhD in Physics from
Rensselaer Polytechnic Institute in
1996. Her research includes measuring

combustion properties in a hybrid rocket. She mentored
FIRST Team 356 since 2000.

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008 177

