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Abstract- Robots developed from the 60’s to the present have been 

restricted to highly structured environments such as work cells or 
automated guided vehicles, primarily to avoid harmful interactions 
with humans. Next generation robots must function in unstructured 
environments. Such robots must be fault tolerant to sensor and 
manipulator failures, scalable in number of agents, and adaptable to 
different robotic base platforms.  Layered Mode Selection Logic 
(LMSL), a robot-controller architecture, addresses these concerns.  
The LMSL architecture has been implemented and tested on UALR’s 
J5 robotics research platform.  Objects are classified by acceleration 
and force measurements. Collisions are detected, and objects are 
classified by how difficult they are to push. J5 either avoids the 
obstacles or manipulates them depending on this classification. 
Comparable results are achieved with all sensors functioning, with 
only the acceleration sensor (force sensor faulted), and with only the 
force sensor (acceleration sensor faulted).  A second demonstration of 
the architecture addresses the problem of border security. A team of 
autonomous robots are configured as a flexible sensor array.  A one-
dimensional experiment using Lego robots shows that the robots 
distribute themselves evenly along the border until an intruder 
penetrates the border. The robots at the point of penetration cluster, 
whereas the robots removed from the point of penetration remain 
evenly distributed, albeit with a greater inter-robot separation. 

 
Index Terms— Mode Selection Logic, Border Security, Fuzzy 

Logic, Sensor Fusion, Fault Tolerance 

1. INTRODUCTION 
 
An important goal in robotics research is to design 

robots capable of performing tasks in unstructured 
environments. A sample unstructured environment is 
shown in Fig.  1, where UALR’s J5 robot platform is 
moving boxes with unknown mass.  Such robots must be 
scalable, fault tolerant, and capable of being upgraded 
without requiring substantial redesign or recoding of the 
controller structure.  The aspect of the robot’s design 
which most greatly influences its ability to satisfy these 
requirements is the controller architecture.  

 The world of robot controller architectures is a 
spectrum with planners at one end and reactive systems at 
the other.  Reactive systems respond quickly to stimuli and 
are inexpensive to implement; however, complex tasks are 
difficult to achieve. Implementing a planner could require 
a more expensive processor, but complex procedural tasks 
may be accomplished.  

Most planner controllers rely on a world model.  The 
world model is either preprogrammed or constructed at 
run-time from sensory data.  Actions are chosen based on 

the state of the world model and predefined goals.  This 
approach allows the designer to explicitly define the tasks 
and goals of the system.  Planners work well in a 
controlled environment such as an assembly line, where 
the world model can either be pre-programmed or where 
the sensor data can be validated.   

In unstructured environments, the limitations of a 
planner become apparent.  Uncertainty in sensor data is 
problematic.  Faulty sensor data can cause an inaccurate 
world model to be constructed, which interferes with the 
planner’s ability to select an optimal course of action.  
Planners have been criticized for their lack of scalability to 
the complexity of real world tasks [1][2].  Planners are not 
easily scalable to multi-agent systems, as the complexity of 
the planner increases exponentially with additional agents.  
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Fig.  1 J5 Robot Platform in Forward Collision Experiment
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Reactive systems use functions to map sensor inputs to 
actuator outputs. Since no world model is maintained, 
errors due to sensor inaccuracy do not accrue over time.  
Reactive approaches have better computational efficiency, 
but their inability to dynamically store data results in a lack 
of optimality and goal convergence [2]. 

Hybrid control architectures combine features from 
reactive systems and planner systems in an attempt to reap 
the benefits of each, while minimizing their inherent 
drawbacks.  Previous work has investigated robot software 
architectures for integrating planning and reactive systems 
[3][4], as well as the application of fuzzy logic to these 
problems [5].  The behavior-based controller architecture, 
a specific example of such a hybrid, uses “basis behaviors” 
as building blocks to achieve more complex functionality 
[6].  A single basis behavior is reactive.  When the robot 
interacts with the environment and with other robots, the 
higher level behavior that results is called an emergent 
behavior.  Behavior-based architectures have been shown 
to be scalable to multi-robot systems [2]. 

Behavior-based controllers require a method for 
combining the outputs of the basis behaviors. Pirjanian 
gives an overview of methods used to combine behaviors, 
which he calls “coordination mechanisms” [7]. 
Coordination mechanisms are divided into two categories:  
arbitration methods and command fusion methods.   

An arbitration method selects one behavior and gives it 
complete control.  Most arbitration methods produce 
locally optimal decisions which may be globally non-
optimal.  For example, a robot may be programmed to 
follow a beacon, which is to the left of the robot, when an 
obstacle is encountered.  The obstacle avoidance behavior 
directs the robot to avoid the obstacle by turning right.  
The global goal of following the beacon would have been 
better served by turning left to get around the obstacle.      

Command fusion methods combine control signals from 
multiple behaviors into a single command.  When the 
behaviors have conflicting goals, the combined command 
signal from conflicting behaviors may result in a non-
optimal action.  In the example of the robot avoiding an 
obstacle while following a beacon, if the obstacle 
avoidance behavior gives a right turn command and the 
follow beacon behavior issues a left turn command, the 
combined command would be to go straight, resulting in a 
collision with the obstacle. 

     Arkin, et al. described a “finite state machine” based 
behavior coordination approach [8], which is based on 
Brooks’s subsumption architecture [9].  In Arkin’s work, a 
“sequence of perceptual algorithms” are developed 
independently and combined in a finite state architecture 
using transition conditions based on distinct robot sensory 
perceptions.  The Finite State Acceptor (FSA) that Arkin 
uses to implement perceptual coordination defines multiple 
operational states, including error states, and allows for 
four exit conditions (normal, terminal, recoverable error, 
fatal error). The states themselves are task-related, where 
the tasks are associated with types of sensory input used in 
the task (for instance, one state may use long-range 

perception to perform a task such as beacon following, 
while another state may use close range perception to 
perform a task such as docking). The FSA does not use the 
complexity of the task in the definition of the state, and the 
implementation of the states may have significant overlap 
in its procedures. It is possible in Arkin’s FSA for two 
states to accomplish the same sub-task using different 
procedures (e.g., obstacle avoidance may be used in both 
long range motion and docking, but with a completely 
different sensor set and implementation). 

Brooks’s subsumption architecture is also state-based; 
however, Brooks builds a concept of layering into the 
architecture. Simple tasks are called “level 0” tasks and are 
closely tied to direct actuator commands. “Level 1” tasks 
(and higher) are built on top of the lower level tasks. 
Brooks introduces the concept that task complexity can be 
accomplished by building modules and layering them to 
achieve increasingly complex tasks. Brooks’s states may 
be at varying levels of complexity and are completely 
independent, in the same way as Arkin’s states are. 
Although Brooks introduces the concept of layering, it is 
implemented by creating independent higher level 
procedures, which subsume the lower level procedures by 
inhibiting them. There is no overlap in function between 
the higher level procedures and the lower level procedures. 

Both Arkin’s and Brooks’s architectures present the 
design graphically as a single layer. This complicates the 
design effort, possibly introducing undesirable state 
interaction effects, and results in a large number of 
“building block” states which must be specifically 
designed. The states are usually designed “to the task” (for 
example, “wander” or “return to start”) rather than using 
building blocks composed of primitive actions such as “go 
forward” or “turn.” Both schemes envision implementation 
through motor commands, rather than abstracting the 
hardware from the control system design, and both 
schemes use sensory input in the state algorithm, rather 
than restricting sensory input to the transitions. 

Brooks’s architecture is specifically designed to include 
“scalability to task complexity” but includes this feature by 

Functional Requirement Design Element 
● Scalable to system 
complexity 
● Tolerant of manipulator 
failure 
● Allow for integration of 
new modes 

Mode Selection Logic 

● Addition of manipulators Action layer 
● Scalable to number of 
robots Behavior layer 

● Scalable to task complexity 
Layered Mode 
Selection Logic 

● Addition of sensors 
● Tolerant of sensor failure 
and uncertainty. 

Object Classifier such 
as Fuzzy Sensor Fusion 
Network 

Table 1 Functional Requirements for LMSL 
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augmenting lower level control system designs with extra 
states that are inherently more complex. The more complex 
states tend to use more advanced sensory input. More 
complex algorithms, such as “path plan,” can be used to 
accommodate more complex tasks. 

Both architectures demonstrate the power behind state-
based control schemes, especially to build failure 
resolution into the design. Arkin’s FSA presents an elegant 
formalism for a state-based controller with multiple 
transitions; however, it lacks a clear means of layering. 
States are presented at the same level of complexity (i.e. a 
simple task might transition to a complex task) and the 
tasks themselves are ad hoc. 

 
1.1. Functional Requirements 

 
 Every design task, including designing a robot that is 

capable of performing useful tasks in an unstructured 
environment, is facilitated by identifying the functional 
requirements for the problem [10].  The functional 
requirements must be generalized to allow for good 
performance in any number of tasks or environments and 
should be independent of each other. Each functional 
requirement should be satisfied by a unique design element.  

Brooks [9] presents elements which he calls “dogmatic 
principles,” several of which are functional requirements, 
others of which are philosophical principles which do not 
affect design. The CAMPOUT architecture[11] also 
determined several functional requirements which its 
specification should fulfill. 

Functional requirements are part of the design effort. 
The Central Arkansas Mobile Robotics Consortium’s 
(CAMRC) 1   functional requirements for a multi-agent 
robot functioning in an unstructured environment are 
summarized in Table 1. These requirements are 
synthesized from those presented in [9] and [11].  

 
1.1.1. Scalability to Robot Complexity 

The specifics of a robot’s hardware often are embedded 
in the controller architecture, causing the architecture to be 
bound to a specific hardware configuration.  Scalability to 
robot complexity means that the same architecture may be 
used to control robots of varying configuration.  This 
specification requires that the hardware (both sensors and 
actuators) be abstracted from the architecture. 

The robot must maintain functionality when non-critical 
sensors or actuators fail.  A minimal set of sensors and 
manipulators are necessary for basic functionality. 
Redundant sensors can be used for critical functions, so the 
architecture should accommodate redundancy. Redundant 
actions can be used for critical functions, so actuator 
failures will not lead to system failure. The architecture 
must accommodate ease of adding functions and ease of 
inhibiting function when actuators have failed. 

                                                           
1 http://robotics.ualr.edu 

1.1.2. Addition  of Manipulators 
The robot must allow for expandability.  Advances in 

sensor and actuator technology are frequent. Non-essential 
sensors and actuators are added to allow for enhanced 
capabilities. Hence, it is necessary for a robot to be capable 
of integrating new technologies into its existing 
infrastructure.  The addition of the new hardware should 
not require radical system redesign. The addition of new 
procedures, which make use of the new hardware, should 
not disrupt existing robot procedures. 

     
1.1.3.  Scalability to number of robots 

Many of the tasks performed in an unstructured 
environment can be done more effectively by a team of 
robots. “Scalability to number of robots” means that the 
architecture allows coordination of a group of robots 
without exponentially increasing the complexity of the 
control implementation. 

 
1.1.4.  Scalability to task complexity 

“Scalability to task complexity” refers to the ability of 
the architecture’s task specification language to allow for 
simple or complex tasks to be defined.  In an unstructured 
environment, robots are required to perform tasks of 
varying complexity. Specifications which are ad hoc do 
not scale to task complexity, whereas specifications which 
build complex routines from simple building blocks are. 

 
1.1.5.  Sensor integration and uncertainty 

Modern sensors are precise and accurate under 
controlled conditions.  In unstructured environments 
sensors are subject to disturbances which cause sensor data 
to be noisy and imprecise.  For a robot to perform well in 
an unstructured environment, the architecture must 
accommodate sensor noise and imprecision. 

2. LAYERED MODE SELECTION  LOGIC 
 
CAMRC is developing an architecture, Layered Mode 

Selection Logic, (LMSL) which is an implementation of a 

Fig.  2. Generic Mode Selection Diagram 
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behavior-based controller that can follow a plan. The 
architecture creates an abstraction layer for the robot’s 
sensory inputs to classify objects in the environment 
according to attributes that are relevant to the specific 
problem and to classify events, such as a collision, by 
setting or clearing a flag. It creates an abstraction layer for 
the robot actuators through a reactive layer, called the 
Action layer. Switching among Actions based on the 
transitions of the discrete flags follows the rules of Mode 
Selection Logic (MSL) [12]. 

 
2.1. Description of Mode Selection Logic Paradigm 

 
Mode Selection Logic (MSL) was originally proposed 

to control the Lycoming AGT1500 engine [13] in the 
M1A2 tank.  Its purpose was to define safe modes into 
which the control system would default when sensors 
failed. This paradigm was successfully implemented and 
tested on UALR’s hybrid rocket motor [12]. 

MSL is similar to a Finite State Machine in that a 
system has a finite number of states, which are called 
modes. In each mode, rules are defined which govern the 
system’s behavior. Well designed modes use a minimum 
of sensory information to operate. Modes must be designed 
so that they are independent of each other, allowing a 
mode to be inserted or removed from the system without 
affecting the operation of other modes.     

Each mode has a predefined set of conditions which, 
when satisfied, trigger the transition to another mode. 
When an exit condition is satisfied a transition flag is set.  
The MSL selects a new active mode based on which 
transition flags are set and their priority level.  

The sensory network contains all 
of the sensor inputs into the system. 
If sensors are used only to set 
transition flags, then the modes 
become open loop reactive 
algorithms. In this ideal case, the 
two aspects of control, sensing and 
actuating, are decoupled. Integrating 
new sensors affects only the sensory 
network. Integrating new actuators 
affects only the modes.  

A Mode Selection Diagram 
(MSD) is used to show a set of 
modes and their transition flags (see 
Fig.  2).  Mode 0 is initially the 
active mode (i.e. the entry mode).  
Mode 0 will remain active until 
either condition 0 or condition 1 is 
set.  If condition 0 is set then mode 
1 will be selected as the active mode.  
If condition 1 is set then mode 2 
will be selected as the active mode.  
A mode can have any number of 
transition flags.  The number in the 
arrow indicates the priority of the 
transition flag, so if both flags are 

set, the higher priority mode will be entered.   
MSL satisfies the functional requirement, “Scalability 

to System Complexity” (see Table 1). In the hybrid rocket 
problem, sensors and operational modes were added 
without major recoding or debugging efforts. Since a 
control failure on that system could result in an explosion, 
software/hardware integration testing was emphasized in 
the design phase. 

For a specific problem, modes and transition conditions 
must be defined that are relevant to the problem. The 
modes should be made as independent as possible (not 
necessarily requiring formal functional orthogonalization), 
and sensor inputs should be confined to the transition 
conditions.  With these restrictions, it is straight-forward to 
build a library of functions, from which more complicated 
routines can be constructed, as described in section 2.2. 

 
2.2. MSL as a Behavior Coordination Mechanism 

 
Based on the work on gas turbine engine control and 

hybrid rocket control, the original implementation of a 
controller on the J5 robot platform (see Fig.  1) used the 
MSL design. The first set of problems attempted required 
that the functional activities be decomposed according to 
the types of sensors used on the robot. A “Robot 
Perception Hierarchy” was defined (see Fig.  3) wherein 
the different sensors were classified according to their 
response time, range, expense, and required computation.  

Sensors which are close to the robot (such as touch 
sensors or force sensors) or which sense robot-specific 
information (wheel encoders or inertial sensors) support a 
reactive control approach. Information update rates are 

Fig.  3. Sensory Hierarchy for LMSL Architecture

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008   165



  

very fast, and processing time to compute a reaction is 
minimal.  The information is immediate, but local. 

Sensors which provide medium-range information 
(laser range finder, ultrasonic sensor) provide more 
information about the area in which the robot is 
functioning. These sensors are more expensive and are 
either updated slowly or require a larger investment in 
computational resources. It is difficult to implement 
meaningful behaviors without this group of sensors. 

Sensors which provide long range information, such as 
vision sensors, are very expensive and require dedicated 
computational resources to extract useful informational 
features. The update rates for these sensors are extremely 
slow relative to the reactive sensors. Vision sensors rely on 
ambient light or artificial light to function and are not 
useful in its absence, so the information may be available 
to the robot only for a portion of its operational time. 

It became apparent that this layering of perception 
would best be accommodated by a layered control 
architecture. Since the Mode Selection Logic supported the 
feature of adding complexity, it was decided to design the 
minimal robot system and add complexity. This approach 
gave rise to the concept of Layered Mode Selection Logic. 

The first Behavior was built using a Mode Selection 
Diagram (MSD), where each mode was a reactive function, 
called an Action. The Action layer encapsulates basic robot 
functions, such as forward, turn left, or actuate manipulator.  
The Action layer modes provide hardware abstraction by 
using a function library to execute the motor commands. 
This method allows the same Action mode to be used on 
robots with varied actuator sets.  For example, a walking 
robot and a wheeled robot will both have forward mode.  
The abstraction facilitates integration of new hardware. 

Once two behaviors were designed (Wander and Avoid) 
using Action layer commands (go forward, random turn, 
go backward) and timers to transition among the Actions, 
it became necessary to choose a Behavior Coordination 
Mechanism to transition among the Behaviors. The natural 
method for transitioning among the Behaviors was to treat 
each Behavior as a mode and to define sensor-based 
transition flags. A recursion on the Mode Selection Logic 
served as an arbitration mechanism (see Fig.  4).  

At the Action layer, transitions were accomplished 
either through timers or very low level sensors, such as 

touch sensors. At the Behavior layer, more sophisticated 
sensory input was required. In particular, a means of 
detecting a collision was required to initiate a transition 
from Wander to Avoid. Ultimately, force sensors and 
wheel acceleration measurements were used to detect 
collisions. However, ultrasonic sensors may be used to 
initiate a transition from Wander to Avoid without 
robot/object contact. 

Once the first layering was accomplished, the different 
classes of sensors could be accommodated at different 
layers in the Layered Mode Selection Logic (LMSL) 
hierarchy (see Fig.  3). An Activity layer was defined by 
transitions among Behaviors, and a Goal layer was defined 
by transitions among Activities. The main implementation 
detail remaining was to develop a methodology whereby 
timers, sensors, and mode monitors could initiate 
transitions at the higher layers.  

Planner-type problems could be accomplished at the 
higher layers. In this respect, the LMSL architecture 
represents a hybrid architecture. In fact, as more complex 
problems were defined, the solution has been to add a layer. 
The work which has been accomplished at the lower layers 
does not need to be repeated for each new problem. 
Therefore, the LMSL architecture addresses the functional 
requirement, “Scalability to Complexity of Task.” 

The current hierarchy which has been implemented on 
UALR’s J5 robot contains the Action layer (reactive), the 
Behavior layer, the Activity layer, and the Goal layer. For 
more sophisticated problems, a Personality layer, which 
switches among Goal layer modes is envisioned. The 
implementation of the Action layer on J5 has been done 
through a device driver, which accepts generic commands 
from the operating system. This gives the added bonus that 
specific controllers can be implemented through a data file 
describing the Actions and transitions at each layer. 
Implementing an increasingly complex controller on a 
specific robot does not involve recompiling code, but 
rather involves over-writing the data structure containing 
modes and mode transitions.  

Since controllers are designed by drawing Mode 
Selection Diagrams, LMSL allows for top down goal 
oriented group behavior design. Design tools based on 
dropping and connecting predefined modes can be 
accomplished through a straight-forward Graphical User 
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Fig.  4. Behavior Layer Mode Selection Diagram 
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Interface (GUI).  This architecture supports graphical 
monitoring tools to indicate what modes a particular robot 
is in and to monitor the transition patterns. 

If the hierarchy is implemented beginning with a 
minimal set of critical modes, and adding functionality, the 
architecture should provide inherent tolerance to actuator 
failure, provided some method of self-diagnosing actuator 
failure is implemented. If the new, non-essential actuator 
or sensor fails, then the MSL can disable the modes that 
require the new features by inhibiting transitions into those 
modes.  As non-essential actuators and sensors fail, the 
controller collapses back to the minimal set of modes. 

3. OBJECT CLASSIFICATION 
 
When the robot interacts with its environment, the robot 

must classify the objects encountered according to the 
different reaction choices. Sensor data is presented to a 
classifier whose output must be a discrete representation to 
be used as a Transition Flag. Different methods of 
classification exist in the literature. In particular, Neural 
Network based Classifiers, Bayesian Classifiers [14][15], 
and Fuzzy Logic Classifiers [16] have been used to 
characterize objects based on sensory information. Since 
Fuzzy Logic Classifiers allow multiple types of sensors to 
be normalized and fused in a network and are linguistically 
simple to implement, this option was chosen in preference 
to more complicated approaches. 

The current research indicates that objects must be 
classified according to manipulability (how easily the robot 
can move an object), traversability (how easily a robot can 
climb over an object), avoidability (how easily a robot can 
circumnavigate an object), and changeability (the 
persistence of an object in the robot’s space). 

 
3.1. Fuzzy Sensor Fusion Network 

 
In unstructured environments, sensor data is imprecise.  

Fuzzy logic is a type of set theory in which elements have 
varying degrees of membership in a set (as opposed to the 
standard binary type set theory where an element either 
belongs to a set or does not belong) [17].  Partial set 
membership facilitates the use of less exact definitions of 
the input to output relationships. Therefore, fuzzy logic 
improves fault tolerance to sensor imprecision.   

A Fuzzy Sensor Fusion Network (FSFN) is a set of 
membership functions, fuzzy inference rules, composition 
rules, and defuzzification functions, which result in a 
discrete flag associated with an object property or event.   

In the FSFN shown in Fig.  5, sensor values are mapped 
onto discrete variables rather than continuous outputs or 
command signals.  The discrete variables signify the 
occurrence of an event, such as a collision.  Each FSFN 
can trigger multiple discrete variables. 

The FSFN combines multiple sensors in a Fuzzy Rules 
Matrix (FRM). The FRM may be designed to incorporate 
redundant sensors to the setting of each transition flag. If a 
sensor is not present or has failed, the transition flag will 
still be updated due to the other sensors. Signal processing 
algorithms to condition sensors can be incorporated in the 
FSFN. The membership functions can be adjusted by 
learning algorithms to improve the robot’s ability to adapt 
to its environment [18][19][20]. 

A membership function, which is usually a piece-wise 
continuous polynomial, determines the degree of 
membership in a fuzzy set and is denoted 

( )xDOM ijij μ= , [ ] [ ]iNjSi ,1,,1 ∈∈  , (1) 

where the index, i,  represents the sensor type, S is the 
number of sensors in the network, the index, j,  represents 
the membership function applied to that sensor, and iN  is 
the number of membership functions assigned to that 
sensor. The output of the membership function is a fuzzy 

variable, which is normalized, [ ]1,0∈ijDOM  , where zero 
represents that the sensor value has no membership in the 
fuzzy variable and one means that the sensor value has 
total membership in the fuzzy variable. 

 The degree of memberships are combined in inference 
rules using the fuzzy “AND” operator, 

( )BABA ,minimum=⊗  . (2) 
where A and B are the outputs of membership functions.  

The product notation is used to denote the combination 
of many variables, 

N
N

j j AAAA ⊗⊗⊗=∏ =
L211

 . (3) 

An Inference Rule is a combination of fuzzy variables, 
Spkjpjk DOMDOMDOMIR ⊗⊗⊗= LL 21  , (4)

Fig.  5. Preliminary Fuzzy Sensor Fusion Network 
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and the matrix formed by all of the inference rules is called 
the Fuzzy Rules Matrix (FRM). The FRM is a multi-
dimensional matrix, whose dimensions are 

SNNN ××× L21  . 
Each event has two combination rules associated with it, 

a contributor rule and a detractor rule. Determining 
contributor and detractor rules involves experiments. A 
simulation of the condition to be detected is created, and 
the rules in the FRM are monitored through the experiment. 
The inference rules which give detectable results when the 
event occurs are selected for the contributor rule.  
Inference rules which give detectable values when the 
event is not occurring and non-detectable values (i.e. 
signal-to-noise ratio between the rule and the noise floor is 
very low) when the event is occurring are selected for the 
detractor rules. Inference rules which give inconsistent 
results are omitted from both rules. Inference rules are 
combined using the fuzzy “OR” operator, 

),(maximum BABA =⊕  , (5) 
where the summation of many fuzzy “ORs” is denoted, 

n
n

i i AAAA ⊕⊕⊕=∑ =
L211

 . (6) 

If M specific Inference Rules from the FRM denoted by 
equation (4) are the set 

{ }
MMM PKJPKJPKJ IRIRIR LLL L ,,,

222111
 , (7) 

then a contributor rule composed of C inference rules is  

∑ =
=

C

i PKJ iii
IRCR

1 L  , (8) 

and a detractor rule composed of D inference rules is  

∑ =
=

D

i PKJ iii
IRDR

1 L  . (9) 

In defuzzification, the contributor and detractor rules 
are compared.  If the value of the contributor rule is greater 
than the value of the detractor rule, the detection flag is set. 
Otherwise, it is clear. 

 
 

4. LMSL APPLIED TO OBSTACLE HANDLING 
 

In autonomous mobile robotics, obstacle avoidance 
techniques are used for motion planning.  In obstacle 
avoidance, an algorithm steers the robot around obstacles 
using sensors to locate and avoid the object.  These 
systems are designed to work in indoor environments and 
safely share their workspace with humans.  In obstacle 
avoidance, it is assumed that the environment should not 
be altered or that the robot is incapable of altering it, and 
therefore the best way to handle obstacles is to go around 
them.  Situations exist where obstacle avoidance is not the 
best choice, such as search and rescue, hazardous material 
clean up, and battlefield reconnaissance.  In these cases, it 
is preferable that the robot is capable of handling obstacles 
instead of avoiding them.  Object handling may refer to 
avoiding the obstacle, manipulating it, or traversing it. 

Obstacle manipulation enables a robot to remove an 
obstacle impeding its path and continue along an optimal 
route to the objective.  This behavior enhances the 
navigational capabilities of the robot by allowing it to 
choose a more direct route. In the case where all routes are 
blocked by movable objects, it creates a solution that 
would otherwise be unattainable.  However, if the obstacle 
is massive enough that manipulating it will cause excessive 
drain to the batteries, then obstacle avoidance is a more 
efficient course of action. 

UALR’s J5 robot 2  was used in developing obstacle 
avoidance and obstacle manipulation using the LMSL 
architecture.  J5 has a mass of 59 kg and is .75 m wide by 1 
m long by .45 m tall (see Fig.  1).  It has a robust 
differential drive system powered by DC motors.  The 
drive axles have optical encoders.  The control system 
hardware consists of an AT motherboard and an x86 
architecture processor and custom-built circuits for motor 
control.  J5 uses a 512 MB flash drive for non-volatile data 
storage. The operating system is Mandrake 9.2 Linux.  J5 
has an articulated inclined plane, called the Wedge, located 
on the front of the robot. The wedge has a strain gauge 
bonded to its rear surface to provide force measurements.  

 
                                                           
2 http://theduchy.ualr.edu/txborn/ 
 

Fig.  6. Obstacle Avoidance Mode Selection Diagram 
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4.1. Behavior design 
 
Obstacle avoidance was implemented using LMSL, and 

manipulation was added after the avoidance MSD had been 
debugged. In the obstacle avoidance behavior (see Fig.  6), 
J5 enters the forward mode when initialization is complete.  
It continues to move forward until a collision is detected.  
If a collision is detected while in the forward mode, the 
robot enters a stop, back up, and random turn sequence.  
Once the random turn is complete, the robot returns to 
forward mode.   

To create the obstacle manipulation behavior, a new 
action, “Push,” and a new transition flag, “Heavy 
Obstacle,” were added to the avoidance behavior (see Fig.  
7). This approach of creating more complex algorithms 
without disturbing existing functionality is similar to 
Brook’s subsumption architecture approach; however, the 
level of complexity of manipulation in LMSL is at the 
same layer as avoidance. The complete behavior will be 
called handling, of which avoidance, manipulation, and 
traversal are separate components.  

In the obstacle manipulation behavior, a collision-
detection initiates a transition into push mode.   The push 
mode directs the robot to make a forward arcing turn.  If a 
heavy obstacle is detected while in either the forward or 
push mode, the robot enters a stop, back up, and random 
turn sequence.  Once the random turn is complete, the 
robot returns to forward mode.   

 
4.2. Fuzzy sensor fusion network design 

 
To implement avoidance and manipulation, a fuzzy 

sensor fusion network to detect “collision” and “heavy 
obstacle” had to be designed. Wheel acceleration derived 
from the left and right wheel encoders were used to detect 
a collision. The conditioned sensor value is processed by 
three membership functions, each of which creates a 
separate fuzzy variable (negative acceleration, zero 
acceleration, positive acceleration). 

The generic “negative” membership function is 
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The generic “positive” membership function is 
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The generic function for “zero” values is 
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The outputs of these membership functions are 
combined through a FRM to generate all possible 
combinations of rules (in this case, two sensors, each of 
which has three states, the matrix is 3 by 3, see Fig.  6), 
and the inference rules are  

kjjk DOMDOMIR 21 ⊗= , (13) 

where { }131211 ,, DOMDOMDOM  are the outputs from the 
left acceleration sensor membership functions and 
{ }232221 ,, DOMDOMDOM  are the outputs from the right 
acceleration membership functions. 

Collision characterization experiments were conducted 
and the output of the rules matrix was observed.  The four 
inference rules which were active prior to a collision and 
after a collision, but were inactive during a collision, were 
chosen as the collision detractor rules,  

{ }32332322 ,,, IRIRIRIR  . 
(14) 

Only one rule was active during a collision, but inactive 
before and after it, and the collision contributor rule set 
consists of the single rule,  

{ }11IR  . (15) 

Fig.  7. Obstacle Manipulation Mode Selection Diagram

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008   169



  

This FSFN is capable of detecting collisions, but due to 
the nonlinearity of acceleration response it is not able to 
reliably differentiate between different obstacle masses.  
Tracking error in the velocity causes acceleration spikes, 
which are erroneously detected as collisions.  Force of 
contact between the robot and the mass was added to the 
inference rule set to correct these problems.  The force 
sensor has a linear response across a larger range of 
obstacle masses.  The contact force verifies that the 
acceleration spike is due to a collision, not tracking error. 

The force sensor has three membership functions (low 
from equation 10, medium from equation 12, and high 
from equation 11). Instead of creating a new rules matrix, 
the existing 3x3 acceleration matrix outputs are combined 
into a higher order 3x3x3 matrix with the force sensor.  
The addition of the force sensor to the FSFN augmented 
equation 13 to include the new DOMs.   

lkjjkl DOMDOMDOMIR 321 ⊗⊗= , (16) 

where { }333231 ,, DOMDOMDOM  are the outputs from 
the force membership functions. 

The collision experiments were repeated and the output 
of the fuzzy rules matrix was observed. The inference rule 
set which comprises the Collision Detractor Rule becomes 

{ }321331231221 ,,, IRIRIRIR  , (17) 
and the inference rule set which comprises the Collision 
Contributor Rule becomes 
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The Push behavior required the Heavy Obstacle 
Detected signal. Experiments showed that the Heavy 
Obstacle Contributor rule should be composed of the 
inference rules from equation 16, 
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and the Heavy Obstacle Detractor rule should be composed 
of the inference rule set 
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(20) 

 
4.3. Manipulation Experiment 

 
To test the Obstacle Identification FSFN, validation 

experiments were conducted.  The robot was placed on a 
starting mark.  A 30 kg rectangular obstacle was placed 75 
cm in front of the robot perpendicular to the robot’s 
direction of travel.  A second 90 kg rectangular obstacle 
was placed 75 cm behind the first (see Fig.  1).  The robot 
was directed to drive forward for 10 seconds at a velocity 
of 26 cm/s.   

At approximately 5 seconds, the robot collided with the 
first obstacle, resulting in a negative acceleration spike and 
a step increase in force (see Fig.  8).  The robot pushed the 
obstacle forward, until, at approximately 8 seconds, the 
second collision occurred.  A second negative acceleration 
spike and a step increase in the force occurred.   

The first collision is detected by the FSFN, but not 
identified as a heavy obstacle (see Fig.  9).  The forward 
collision flag is set.  The second collision triggers the 
heavy obstacle flag (see Fig.  9). 

 
 

4.4. Fault tolerance 
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Fig.  8. Sensor response during manipulation experiment
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     The collision detection capability of the FSFN is 
inherently fault tolerant to sensor failure.  The method used 
in combining inference and composition rules allows for 
the rules base to automatically reduce itself to a subset that 
is not dependent on the faulted sensors.  

 
4.4.1. Force Sensor Failure 

If a force sensor fails, the most likely failure mode is a 
sensor reading of zero.  The zero force reading causes the 
medium and high force membership functions to equal 

zero ( )0,0 3332 == DOMDOM  and the low force 

membership function to equal one ( )131 =DOM . The 
fuzzy AND operator in equation 16 causes  

kjkjjk DOMDOMDOMDOMDOMIR 2131211 ⊗=⊗⊗= , 

032212 =⊗⊗= DOMDOMDOMIR kjjk , and  

033213 =⊗⊗= DOMDOMDOMIR kjjk . 
Applying these results to the Collision Detractor set, 

equation 17 reduces to  

{ }32332322 ,,, IRIRIRIR  , 
(21) 

and the Collision Contributor rule (equation 18) becomes  
{ }11IR  . (22) 

Because medium and high force membership functions 
are involved in all of the Heavy Obstacle Contributor 
inference rules in equation 19, faulting the force sensor 
reduces the contributor rules to a null set. The Heavy 
Obstacle Detractor rule set reduces equation 20 to  

⎭
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,,,
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IRIRIRIR
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, 
(23) 

which contains all combinations of acceleration DOMs.   
Since the acceleration membership functions overlap, 

the value of the Detractor Rule will always be greater than 
zero, and a comparison between the zero Contributor Rule 
and the non-zero Detractor Rule will always result in the 
Heavy Obstacle Detected flag being zero. With the force 
sensor faulted, the augmented FSFN is equivalent to the 
FSFN without the force sensor. Since the FSFN without 
the force sensor could adequately detect collisions, and 
therefore initiate transitions into the avoidance behavior, 
but could not detect heavy obstacles and therefore initiate 
transitions into the push behavior, the behavior with the 
faulted force sensor degrades to the behavior of the system 
that did not possess the force sensor. 

Fault tolerance was verified experimentally by 
disconnecting the force sensor and repeating the 
manipulation experiment (see section 4.3). Collisions were 
detected consistently, but heavy obstacles identification 
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failed. A similar result occurs for each acceleration 
measurement. The manipulation experiment was repeated 
with the acceleration sensors faulted.  Collisions were 
detected consistently, and heavy obstacles identification 
was successful. 

 

5. LMSL APPLIED TO BORDER SECURITY 
 

There are many applications that can be used to drive 
the development and validation of a robot controller 
architecture, such as Search and Rescue, Mine Sweeping 
[21], and Planetary Exploration [22][23]. With the rising 
tide of illegal immigration overlaid with terrorism threats 
at home, the task of border security is becoming 
increasingly important.  Fixed walls or fixed security 
monitors can be undermined, broken down, or evaded.  
Manned patrols are costly and impractical.  Technological 
advances in the field of robotics may provide a flexible 
sensor array which can enhance monitoring of the borders. 

 
Table 2. Modes for border security 

Behavior Activity Goal 
Pursue More Flex Border Security 
Capture Balance  
Patrol Less Flex  

 
A flexible sensor array refers to a team of mobile robots 

carrying a sensor package, such as a thermal imager, which 
can reliably detect a human signature.  This array is spread 
across a perimeter, and each robot attempts to maintain a 
fixed distance with its neighboring robots, such that a 
group of humans passing in the vicinity of the robots will 
be sensed by the sensor package (see Fig.  10). 

 As the signature moves towards the robots, the robots 
are designed to move away from the border and to 
maintain contact with the signature. Combined with the 
array's rule of maintaining a fixed distance with its 
neighbors, when one robot moves out of position, the 

section of the sensor array will deform towards the interior. 
This represents a detectable pattern, which either a human 
border agent with a heads up display can monitor or which 
algorithms can infer from robot positions and states. The 
differences between an animal crossing the border versus a 
mass of humans crossing the border can be distinguished. 

 
Table 3. Transition Flags for border security 

Flags Layer Source 
Perimeter_Detected, 

Intruder_Detected, 
Intruder_Escaped  

Activity FSFN 

Long_Pursuit, 
Short_Pursuit 

Activity Timer 

Low_Density, 
Medium_Density, 

High_Density 

Goal Mode 
Monitor 

 
The implementation of border security using LMSL will 

require Actions, Behaviors, Activities, and Goals to be 
developed.  The library of Activity layer modes and 
Behavior layer modes for the general case (see Table 2) are 
not yet fully developed.  The Behaviors will be described 
in terms of their desired outcomes.    

FSFN’s that are capable of detecting boundaries, robots, 
and intruders are required.  The flags which will be needed 
to implement the proposed border security scheme are 
presented in Table 3.  

The system will recognize two types of perimeters.  The 
perimeter that the team is assigned to guard is called the 
Border Perimeter.  A second perimeter, which serves as a 
limit to keep the robots from dispersing too far is called the 
Constraining Perimeter.  The intersection of the Border 
perimeter and the Constraining perimeter bounds a closed 
domain (see Fig.  10). 

 
5.1. Behavior layer modes 

  
In the Patrol behavior, robots are directed to maintain a 

centroid of distance between themselves and neighboring 
robots. The robots are attracted to the Border perimeter and 
may not cross the Constraining perimeter. The 
combination of these two rules results in the robots settling 
into a pattern along the Border perimeter with a more or 

Fig.  10. Definition of Perimeters 

Fig.  11. Less Flex Activity MSD 
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less fixed spacing among themselves, depending on the 
terrain, number of robots, and length of the Border 
perimeter (see Fig.  10).  

If a thermal or visual signature representative of a 
possible human is detected, the Capture behavior directs 
the robot to maintain a fixed distance from an intruder.  
While in Capture behavior, the presence of other robots is 
ignored and the Border perimeter attraction is ignored; 
however, the Constraining  Perimeter may not be crossed. 

If a robot loses the signature from the intruder, it may 
enter the Pursue behavior. This behavior directs the robot 
to move in the direction of the last known heading of the 
intruder.   Other robots are ignored.  The Border Perimeter 
attraction is ignored, and the Constraining Perimeter 
remains in effect. 

 
5.2. Transition flags 

 
The transition flags for the Activity layer are 

Intruder_Detected, Intruder_Escaped, Perimeter_Detected, 
Short_Pursuit, and Long_Pursuit (see Table 3).  
Intruder_Detected indicates that a potential human has 
been encountered.  The Intruder_Detected flag may be 
generated by a FSFN using an array of complimentary 
sensors such as vision and thermal imager. 

The Intruder_Escaped flag is triggered when the robot 
loses sight of the intruder.  This flag is only triggered after 
an intruder has been detected.  Perimeter_Detected 
indicates that the robot is nearing a Perimeter. At the 
Activity Layer no distinction is made between Border and 
Constraining perimeters. The Short_Pusuit and 
Long_Pursuit flags are set by timers, which start when the 
robot enters the Pursuit mode.   

 
5.3. Activity layer modes 

 
In the Less_Flex activity, the robot favors the Patrol 

behavior (see Fig.  11).  The initial state of the robot is the 
Patrol behavior.  If an intruder is detected, the robot enters 
the Capture behavior.  The robot returns to Patrol behavior 
when either the intruder escapes or the robot encounters 
the Border perimeter or the Constraining perimeter.  In 
Less_Flex, the robot does not pursue an intruder, which 
minimizes the robot’s displacement from the border.   

In the Balance activity (see Fig.  12), the robot gives 
equal treatment to Pursue and Patrol.  The robot begins in 
Patrol behavior.  When an intruder is detected, the robot 

enters the Capture behavior.  If the Border perimeter or the 
Constraining perimeter is encountered while the robot has 
the intruder captured, the robot will not cross either 
perimeter, but will return to Patrol behavior.  If the intruder 
escapes and no perimeter is detected, the robot will Pursue.  
While in Pursue behavior, if an intruder is detected, the 
robot will return to Capture.  While in Pursue behavior, if a 
perimeter is encountered or the short pursuit timer expires, 
then the robot will return to Patrol. 

In the More Flex activity the robot prioritizes the Pursue 
behavior (see Fig.  14).  The MSD for More Flex is similar 
to the Balance mode MSD.  Instead of the short pursuit 
timer, a long pursuit timer is used.  This gives the robot 
more time to reacquire its target before returning to Patrol.  

 
5.4. Goal Layer 

 
The Goal Layer, Border Security, is operating on each 

robot; however, the inputs to generate transition flags are 
initiated by a combination of intruder detection from the 
team of robots. The Border Security goal (see Fig.  13) 
transitions among the Activities, “Balance,” “More Flex,” 
and “Less Flex.” 

The purpose of the Border Security goal is to keep the 
robot formation dispersed without losing the integrity of 
the patrolled border.  This dispersion allows a minimum 
number of robots to adequately monitor an area.  It will 
vary with the intruder density.  When more intruders are 

Fig.  12. Balance Activity MSD

Fig.  14. More Flex MSD

Fig.  13. Border Security Goal  MSD 
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present, the robots guarding that section must be more 
concentrated to track them.  When fewer intruders are 
present, the formation can be more dispersed. 

The Low_Density, Medium_Density, High_Density 
intermediate flags used in the Border Security goal are 
determined by a Mode Monitor.  Each robot monitors the 
Behavior layer state of its near neighbors.  The more near 
neighbors who are in the Capture or Pursue behaviors, the 
more intruders are present in the robot’s vicinity.  This 
value is a continuous variable that is fed into a FSFN to set 
the “High_Density” and “Low_Density” intermediate flags.  
More robots in Patrol behavior would indicate that few 
intruders are being detected and therefore this section of 
border has a low intruder density.  This value is fed into a 
FSFN to determine the “Low_Density” intermediate flag. 

Initially all robots are in the Balance activity.  When the 
“Low_Density” intermediate flag is set, the Activity is 
switched to “More Flex” which allows the robots to 
disperse over a wider territory.  This activity should be the 
normal Activity in which the flexible sensor array remains 
when no intruders are present. 

If the robots begin to detect intruders, the “Medium 
Density” flag will be set. If the number of intruders is large, 
both the “Medium Density” and “High Density” flags will 
be set. Once the “Medium Density” flag is set, the Activity  
switches to Balance, which decreases the amount of time in 
which the robot will remain in the Pursue behavior upon 
losing contact with an intruder. The likelihood that robots 
will remain in position increases, as each robot passes off 
an intruder to its near neighbors.  The overall sensor array 
flexes in the direction of the intruders due to the Capture 
and Pursue behaviors of the robots actively engaged with 
intruders. The neighbors of these robots also adjust their 
positions, since the Patrol behavior requires them to 
maintain a centroidal distance with their near neighbors. 

In the event of mass intrusion, the “High Density” flag 
will be set, which will transition robots into the “Less 
Flex” activity. In “Less Flex,” robots may Patrol or 
Capture, but may not Pursue. This tightens the sensor grid 
in the vicinity of a mass crossing.  

As the intruder density decreases (either because the 
intruders return across the Border perimeter or because the 

have crossed the Constraining perimeter), the “Low 
Density” flag will be set, and robots return to the “More 
Flex” activity. The attraction of the Border perimeter will 
eventually return the flexible sensor array to its original 
configuration along the border. 

Because the robots are sharing information about 
intruder contacts, at the point of many contacts, the robots 
will have the “High Density” flag set. Away from the 
contacts, robots who are not engaged with intruders will 
still have the “Medium Density” flag set. 

The current prototype implementation of the Border 
Security goal is discretized into three Activities. If this 
proves to be too coarse a discretization, additional 
Activities (for instance “Even More Flex” and “Ludicrous 
Flex”) can be added to improve performance. 

 
5.5. Behavior Prototype Experiment 

 
A prototype border security behavior has been 

developed and tested.  The general border security problem 
was simplified for the prototype system.  This prototype 
behavior exhibited emergent behaviors which support its 
ability to maintain a secure perimeter.   

The border region was simplified by reducing it to a 
single dimension.  A one dimensional border allows for 
straightforward control of the orientation of the robots 
during interactions.  The types of interactions are reduced 
by combining robot and perimeter detections into a single 
type called a boundary detection.  All other interactions are 
considered intruders.  These interactions can be detected 
by using a simple set of sensors.     

The prototype behavior was tested using Lego robots 
(see Fig.  15).  The robots use a pair of light sensors on 
either side to detect boundaries.  A boundary is designated 
by a white boundary identifier.  Each robot has a boundary 
identifier on both sides such that when it interfaces with 
the other robots they detect each other as boundaries.  
Similar boundary identifiers are located at the limits of the 
perimeter.   

Fig.  15. Lego border security robot 
Fig.  16. One Dimensional border security MSD 
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The robots use a pair of touch sensors to detect 
intruders.  The touch sensors are oriented such that when 
the robots interact, the light sensor will allow them to 
identify each other before the touch sensor is activated.   
Any non-boundary detected is considered an intruder.  A 
block of wood served as an intruder in this experiment. 

The prototype MSD (see Fig.  16) is an implementation 
of the Balance activity (see Fig.  12). The general 
behaviors (Patrol, Pursue, and Capture) are made specific 
by adding left and right directions to them.   The boundary 
detected transition flags are also made specific by the 
addition of a direction (Left Boundary, Right Boundary).  
The Long Pursuit and Short Pursuit intermediate flags 
from the general case were omitted for simplification.  

Each robot begins one of the two Patrol modes.  While 
in Patrol, the robot travels in the specified direction (left or 
right) until one of two events occur: 

1. A light sensor detects a boundary (another robot or a 
perimeter).  A transition to the complementary patrol mode 
is initiated, causing the robot to move away from the 
boundary. In the absence of intruders the robot will cycle 
between Patrol Left and Patrol Right modes. 

2. A touch sensor indicates the presence of an 
intruder.  A transition into the Capture mode corresponding 
to the left or right touch sensor is initiated.  While in 
Capture mode, the robot maintains a fixed distance to the 
intruder.  The distance is limited by the range of the sensor.  
Since a touch sensor is used in this experiment, the range is  
zero, and the robot will stay in contact with the intruder.  

When the touch sensor is released, the Intruder Escaped 
flag is set, causing the robot to transition into the 

corresponding Pursue mode.  It pursues in the same 
direction it had been patrolling when it performed the 
capture.  The robot will remain in Pursue until the intruder 
is recaptured or a boundary is encountered. 

Two robots running the prototype behavior were placed 
in a 2.25 meter track (see Fig.  17).  The position of the 
center of each robot was measured at 0.5 second intervals 
using a video capture software called LoggerPro. A single 
stationary intruder was inserted at various positions on the 
track.  Three distinct emergent behaviors were observed:  

1. When no intruders were present, the robots patrolled 
the entire perimeter (see Fig.  18). The emergent behavior 
shows that the formation will uniformly distribute itself 
within the bounded region. In Fig.  18, each robot 
oscillates towards the center position.  When it encounters 
the other robot, it changes direction until it encounters the 
boundary. 

2.  When an intruder was placed between the robots, the 
robots captured the intruder from both sides (see Fig.  19).  
The emergent behavior shows that the robots will converge 
on an intruder, but leave the border un-patrolled. The 
spacing between the robots at 10 seconds is the width of 
the intruder plus one robot width.     

3.  When an intruder was placed on the outside of either 
robot, the robot nearest the intruder captured it while the 
neighboring robot patrolled the area that the capturing 
robot no longer visited (see Fig.  20). This emergent 
behavior shows that the formation will adapt to the 
presence of intruders. 
    When no intruders are present, every position along the 
patrol border should be visited an equal amount of time by 
at least one robot. When an intruder is captured, one or 

Fig.  17. Border Security Robots in One Dimensional Border

Fig.  18. No intruder; patrol behavior. 

Patrol 1: No intruder

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

Time (seconds)

Po
si

tio
n 

(m
)

Robot 1

Robot 2

Fig.  19. Intruder in middle; capture behavior. 

Patrol 2: intruder in middle

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

Time (s)

Tr
ac

k 
Po

si
tio

n 
(m

)

robot 1
robot 2

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 13, NO. 3, SEPTEMBER 2008   175



  

both robots will stay at the intruder’s location until given 
further instructions. As a result, the rest of the patrol area 
may be covered less frequently or not at all.  
    The percentage of time each location of the track is 
covered by a robot during the trials graphed in Figures 18-
20 is shown in Fig.  21. The track was split into six bins, 
each 40 cm wide. The bin width was selected to be slightly 
larger than the width of one robot. For each track position 
bin, the amount of time that the bin was occupied by a 
robot was recorded and a percentage of total time was 
calculated. Given a sufficiently long running time, this 
graph will have a flat line if no intruders are present, or a 
peak at the location of an intruder. This graph can be used 
to set a threshold value, based only on the position of the 
robot, to determine whether an intruder is present and what 
its location is. If the percentage peaks above that threshold 
value, the human controller can be alerted that an intruder 
is present at a specified location. The controller may then 
elect to send out new instructions. This information may be 
used at the Goal Layer to adjust the number of robots in the 
vicinity of the intruder to adjust their Activity setting. 

CONCLUSIONS 
The LMSL architecture has been implemented and 

tested on UALR’s J5 robot.  It has been verified that 
certain functional requirements were satisfied.  The ability 
to incorporate new sensors into an existing infrastructure 
was verified by adding the force sensor into the 
Obstacle_ID FSFN after a preliminary FSFN was built 
using only acceleration.  The ability to incorporate new 
modes was verified by adding the pushing mode to the 
obstacle avoidance behavior to create the obstacle 
manipulation behavior.  The fault tolerance of the FSFN to 
sensor failure has been verified experimentally for both 
acceleration and force sensors. 

An application to Border Security was phrased in the 
LMSL paradigm. The Behavior, Activity, and Goal Mode 
Selection Diagrams have been developed. A one-
dimensional prototype was implemented in hardware, and 
emergent behaviors consistent with the Border Security 
design have been observed. 

FUTURE WORK 
The formalism of the Layered Mode Selection Logic 

and it application to cooperative mobile robotics problems 
is in an early stage of development. The CAMRC has 
defined many of the routines for implementation, but is 
still developing the functional requirements and the 
algorithms to respond to those requirements. CAMRC has 
begun work on a Matlab based Graphical User Interface 
for writing the tables used in the layers in the MSL. It is 
developing object classification algorithms from sensor 
inputs to determine appropriate transition flags. It is 
developing a library of debugged Actions, Behaviors, 
Activities, and Goals to be used in the GUI to enhance the 
design effort. 

The border security is being transitioned to a two 
dimensional verification of the algorithms, using a small 
robot based on the Vex microcontroller. 

Although the LMSL should provide tolerance to 
actuator failures, this feature has not yet been tested, since 
current robots used in this work do not have redundant 
features. The movable wedge on the J5 robot platform will 
allow us to explore traversability of some terrain.  When 
this feature has been activated, the concept of actuator 
failure will be explored. 

Additional quantification of fault tolerance to sensor 
failures is being developed by adding ultrasonic sensors to 
augment the touch sensor with a non-contact collision 
detection. This sensor provides a much more dramatic 
difference between sensor types and will make for a more 
thorough test of this feature. 
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Mechanical Engineering Technology senior design project 
in conjunction with the 2001 FIRST Robotics Competition. 
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