
USING ROBOTICS TO TEACH THE SCIENTIFIC METHOD

Gabriel J. Ferrer
Department of Mathematics and Computer Science
Hendrix College
Conway, AR 72032
(501) 450-3879
http://ozark.hendrix.edu/~ferrer/
ferrer@hendrix.edu

ABSTRACT

We present a series of lab exercises that teach non-science majors effective use of
the scientific method. We have employed a robotics theme for these exercises, as robotics
problems provide a compelling framework for the use of the scientific method in problem-
solving. We identify four types of scientific experiments that are useful in this regard, and
demonstrate how these types of experiments support the types of problem-solving essential to
completing robotics tasks. Our approach is influenced by previous results in robotics education,
computational use of the scientific method, and active learning techniques. Our exercises are
available as a lab manual [12].

INTRODUCTION

Hendrix College has a campus-wide requirement (NS-L) that every student must take a
science course with a lab. A student completing an NS-L course is expected to be able to apply
scientific and mathematical principles in the context of the scientific method to systematically
and critically assess the validity of observations related to the natural world.

We have created a no-prerequisites robotics course that satisfies this requirement; we
have taught it 2-4 times per year since 2003. It combines introductory material from computing
and physics. In this paper, we describe how our lab activities enable students to achieve our
learning goals. These activities have been bundled into a lab manual [12].

We believe that for students (especially non-science majors) to find the scientific method
interesting requires it to be situated within the context of a larger goal or purpose, a context
we supply with robotics. The utility of robotic automation, in combination with the philosophical
issues robots raise, makes the study of robotics compelling to students from a wide variety of
backgrounds. The scientific method, then, is contextualized as a tool that enables students to
solve problems that arise when building and programming robots.

The course uses the Lego Mindstorms NXT platform. Students program the robots using
the pbLua programming language. We have augmented the pbLua language with a custom
library to simplify certain programming tasks.

This paper is organized as follows. We begin with an overview of our learning goals.
In this context, we describe the different types of problem-solving scenarios and scientific
experiments that students undertake in their lab exercises, along with an overview of how those
types are represented in the lab activities. We next give several examples of lab exercises that
exemplify the different types of problem-solving scenarios and scientific experiments described
previously. We then describe examples of free-form projects that students have developed after

completing the lab exercises. After a discussion of student reaction and a review of related
work, we present our conclusions.

COURSE GOALS AND STRUCTURE

Our primary learning goal for the course is for students to learn to use the scientific
method as part of the problem-solving process for building and programming robots. From this
general goal, we formulated the following specific learning goals for our course:
1. Apply the physics of translational motion, rotational motion, forces, and gear ratios to create
and test mathematical models of aspects of robot behavior.
2. Translate an English-language description of robot behavior into a corresponding computer
program that employs basic programming constructs (including variables, loops, conditionals,
blocks, and subroutines) to select robot motor settings based on inputs from light, sonar,
rotation, and touch sensors.
3. Formulate and test hypotheses about expected robot behavior, given a robot and a program
running on that robot.
4. Learn how to identify and fix problems on a robot that is not behaving as desired.

The course consists of ten lab activities. Each lab requires about four hours of in-class
work; students complete a lab report outside of class time. One lab is completed each week.
The final four weeks of the course consist of a free-form design project.

The lab activities consist of several different types of problem-solving scenarios:
1. Program Understanding: Students are given some code, and must figure out its meaning
through a combination of reasoning and experimentation. This supports Learning Goal 2.
2. Equipment Understanding: Given some equipment (e.g. sensors or motors), students must
determine how to use the equipment to enable the robot to achieve its goals. This scenario
supports Learning Goals 1 and 2.
3. Program Modification: Students modify a given program in order to attempt to alter the
robot’s behavior in a desired manner. They test the program to see if the modifications succeed;
they continue modifying the program until its behavior is acceptable. This scenario supports
Learning Goal 2.
4. Program Creation: Students are given an English-language description of a desired robot
behavior, and must translate it into a functioning computer program. This supports Learning
Goal 2.
5. Robot Modification: Students are given a partially complete robot, and must modify it to give it
a capability. This scenario supports Learning Goal 1.
6. Robot Construction: Students must construct a robot from scratch with certain desired
capabilities. This indirectly supports all of our learning goals.
7. Robot Optimization: Students start with a functioning robot and control program, and must
discover either physical or program modifications to improve its performance. This scenario
supports Learning Goal 1.

To enable students to solve these problems, we teach them to conduct different kinds of
scientific experiments:
1. Program Analysis: Students start with a section of code, either provided for them or of their
own creation. Before running the code, they write down a hypothesis of its behavior. If a goal for

the code is available, students are also required to determine whether this goal will be achieved
by the code. They then run the code to test whether the hypothesis is correct. This addresses
problem types 1, 3, and 4, and supports Learning Goals 2, 3, and 4.
2. Program Comparison: Students compare the performance of programs representing different
approaches to solving a problem. They use both quantitative and qualitative performance
analysis to construct an argument for the relative merits of each approach. This addresses
problem type 7 and supports Learning Goals 2 and 3.
3. Physical Analysis: Students create a mathematical model of robot behavior. They run the
program, followed by performing measurements to test the mathematical model. This addresses
problem types 3, 4, 5, and 7, and supports Learning Goals 1 and 3.
4. Equipment Analysis: Students are given a previously unused sensor and a program that
displays the sensor’s current reading. They then place the robot in various physical situations to
determine the meaning of the readings, addressing problem types 2, 3, and 4, and supporting
Learning Goals 1, 2, and 3.

LAB ACTIVITIES

Having discussed the types of experiments that are employed, in this section we will
give some specific instances to illustrate their characteristics. In our first example, students are
given the following program (after a brief explanation of the repeat-until loop):

They must then predict the program’s behavior, type in the program, and check their
prediction. They then must suggest modifications that would enable the robot to drive forward,
stopping when the bump sensor is hit. They then test their hypothesis by seeing if their modified
program successfully does so.

In the next exercise, most students fail to correctly predict the outcome. In the last
exercise, the motors were going forward, and the robot stopped after 1000 rotation counts.

The students typically pause in puzzlement as the robot fails to stop, not immediately
realizing that the rotation counts are descending rather than ascending. This is one of many
disequilibration exercises [2] we have incorporated into the course.

In our final example exercise, students are given the following block of code. They are
then instructed to point the light sensor at a variety of objects, recording the readings as they
go. Rather than simply telling students that the values range from 0 to 100, and represent the
percentage of light saturation, we require them to conduct experiments to investigate the
practical meaning of the sensor values in a concrete environment.

OPEN-ENDED PROJECTS
For the final stage of the course, students design and implement their own open-ended

projects. It has been our experience that our lab exercises have prepared students very well for
this task. Some of the most interesting projects students have devised over the years include:

● A door-opener: The robot used light sensors to receive a “request” for a door to be
opened. It had a lever mechanism that was geared strongly enough to pull the door
handle while its wheel base dragged the door open.

● A robotic airship: The students carefully determined the amount of lift necessary to
transport the robot aloft, and were able to acquire a suitable helium balloon for this
purpose. They hand-carved their own propellers for propulsion.

● A keyboardist: The robot would drive between locations in front of an electronic
keyboard with marks in place to enable the light sensor to identify key notes. It played a
melody from a popular movie soundtrack.

● A page-turner: This robot would turn pages in a cardboard-style children’s book upon a
sensory cue from the reader.

STUDENT RESPONSE

Course evaluations from the most recent offering confirm that students are receptive to
these lab activities. The 15 enrolled students included one Mathematics major, four Economics
majors, two International Relations majors, one Religious Studies major, one English major, two
Art majors, one History major, and three students who had not yet declared a major. On the
course evaluation, every student agreed with the statement that “The assigned text was an
effective instructional tool.” Here are some representative free-response comments from
students:

● "I know your goal for this class is to make science fun and accessible to people like
myself and I just wanted to let you know that you have succeeded."

● "Learned new things every lab."
● "The lab book is pretty clear but doesn't always help on really hard labs that introduce

new commands."

The last comment is not unexpected; it is part of the course design that the students
have to experiment a bit to see how certain commands work. We see it as the role of the
instructor to help the student during the lab who begins to flounder during this process.

RELATED WORK

The course that most directly inspired our own is the Robotic Design Studio from
Wellesley College [9]. The most important ideas we have adopted from their course are the
final design project, a “no prerequisites” approach, and an immersive lab experience with no
formal lectures. Our course differs from theirs in that the Wellesley course goal is “Engineering

for Everyone”, exposing liberal arts students to engineering concepts. In our case, the main
motivation is to provide hands-on experience with the scientific method. The lab activities in the
two courses consequently have a very different flavor.

The lab manual we have written for our course shares strong affinities with that created
and described by Briggs [3]. His course employs an active learning approach based on a
lab manual that interleaves reading material with exercises. He describes positive learning
outcomes that we can confirm on an anecdotal basis. A similar problem we faced is that of
consistent attendance; as with his course, we have a very strict attendance policy.

Many computing courses employing robotics are introductory programming courses
(e.g., [5] [8] [10] [11]). The primary learning goal of these courses is to develop general
programming skills and stimulate student interest in majoring in computer science. As our
focus is on developing the use of the scientific method, general programming skills are
deemphasized. In our exercises, looping has very little application beyond repeating the
execution of a reactive control program. Consequently, we neither intend to nor expect our
students to develop a strong intuition about the more general abstractions that loops provide.

Several papers have studied the impact of robotics on student motivation (e.g. [5] [11]
[6]) and technical competence [4]. Our experience anecdotally confirms the positive results on
student motivation from the literature. The negative result for technical competency from Fagin
and Merkle [4] does not have much impact on our course design, for developing programming
skills at a level comparable to CS1 is not one of our learning goals.

Several papers have investigated the explicit incorporation of the scientific method
into computing education (e.g. [2] [7] [1]), the most pertinent of which describes Braught’s
disequilibration exercises [2]. We employ this technique across many program analysis
exercises, especially in the early part of the course. The resulting atmosphere of uncertainty has
yielded for us the benefits he describes, on an anecdotal basis.

CONCLUSION

Robotics problems provide an ideal framework for teaching students the scientific
method in a hands-on active learning environment. In this experience report, we have shown
how a series of lab exercises involving escalating problem complexity suffices to immerse
students in the scientific method. We identified four major types of experiments that students
perform repeatedly in different forms to support their problem-solving efforts.

The course has proven to be well-received, both in terms of course evaluations
and in terms of enrollment; over 10% of graduating students at our institution (enrollment
approximately 1350) have taken the course over its ten-year history. Due both to its popularity
and its academic success, we highly recommend this approach to faculty at institutions with a
comparable curricular situation.

REFERENCES
[1] G. Braught, C. S. Miller, and D. Reed. Core empirical concepts and skills for computer
science. In SIGCSE ’04, pages 245–249, 2004.
[2] G. Braught and D. Reed. Disequilibration for teaching the scientific method in computer
science. In SIGCSE ’02, pages 106–110, 2002.

[3] T. Briggs. Techniques for active learning in CS courses. Journal of Computing Sciences in
Colleges, 21(2):156–165, Dec. 2005.
[4] B. S. Fagin and L. Merkle. Quantitative analysis of the effects of robots on introductory
computer science education. Journal on Educational Resources in Computing, 2, Dec. 2002.
[5] M. M. McGill. Learning to program with personal robots: Influences on student motivation.
ACM Transactions on Computing Education, 12(1):4:1–4:32, Mar. 2012.
[6] W. I. McWhorter and B. C. O’Connor. Do Lego Mindstorms motivate students in CS1? In
SIGCSE ’09, pages 438–442, 2009.
[7] D. Reed. The use of ill-defined problems for developing problem-solving and empirical skills
in CS1. Journal of Computing Sciences in Colleges, 18(1):121–133, Oct. 2002.
[8] J. Summet, D. Kumar, K. O’Hara, D. Walker, L. Ni, D. Blank, and T. Balch. Personalizing
CS1 with robots. In SIGCSE ’09, pages 433–437, 2009.
[9] F. Turbak and R. Berg. Robotic design studio: Exploring the big ideas of engineering in a
liberal arts environment. Journal of Sci. Ed. and Tech., 11(3):237–253, Sept. 2003.
[10] S. van Delden and W. Zhong. Effective integration of autonomous robots into an
introductory computer science course: a case study. Journal of Computing Sciences in
Colleges, 23(4):10–19, Apr. 2008.
[11] D. Xu, D. Blank, and D. Kumar. Games, robots, and robot games: complementary contexts
for introductory computing education. In GDCSE ’08, pages 66–70, 2008.
[12] G. Ferrer. Introduction to Robotics using Lego Mindstorms NXT and pbLua. Lulu.com.
2012.

