
A FORMAL LANGUAGE AND ANALYSIS TOOL FOR BLACK BOX

SPECIFICATIONS

Gabriel J. Ferrer

Department of Mathematics and Computer Science

Hendrix College

Conway, AR 72032

(501) 450-3879

ferrer@hendrix.edu

ABSTRACT

The black box specification, developed by Harlan Mills, addresses the problem of

software errors that result from failing to properly specify a response for an input

scenario. Each black box models how an artifact responds to a particular input from its

environment. This response depends on both the current input and the entire history of

interactions it has had with the environment.

We have observed that students find the black box concept useful and

comprehensible, but tedious and error-prone as well. In order to enhance the utility and

accessibility of this technique, we have developed a formal specification language and

analysis tool for black box specifications. The analysis tool verifies whether a black box

is a well-formed specification. To this end, it ensures that a response is specified for

every possible combination of inputs from the environment, that every condition is

logically disjoint with every other condition in the specification, and that every condition

in the specification matches at least one potential input scenario. We have evaluated the

utility and performance of the tool with two different groups of undergraduate students.

INTRODUCTION

Many errors in software can be attributed to the failure to properly specify a

response for an input scenario. A black box specification [1][3][4] models how a software

artifact interacts with its environment. A black box does not represent any internal state

of the artifact; it only represents externally observable interactions with its environment.

This model can assist a software engineer in ensuring that a response for every input

scenario has been specified [3].

We have previously introduced undergraduate students to black box specifications

based on the presentation by Prowell et al [3]. While students informed us that the

process was useful, they also complained about the tedium involved in constructing and

verifying the specifications. To address this problem, we have developed a formal

language and modeling tool. The models built in this language can be algorithmically

analyzed by the tool to ensure that the black box is a well-formed specification. The

analysis tool ensures that a response is specified for every possible combination of inputs

from the environment, that every condition is logically disjoint with every other

condition, and that every condition matches at least one potential input scenario.

The analysis tool is also able to generate an animation of the specified software

artifact. This animation is a GUI with a button for each stimulus. It shows both the

current response and the entire list of responses issued so far. This allows both the

specifier and domain experts to validate the black box against the requirements.

We begin by presenting our representation of black box specifications. Next, we

describe the verification algorithms employed by the analysis tool. We then discuss the

results from our evaluation of the tool with two different groups of undergraduate

students. We first analyze the usability and utility of the tool, followed by an analysis of

efficiency concerns. We then discuss related work.

BLACK BOX SPECIFICATION

We call each input from the environment a stimulus and each output a response.

A history is a finite-length sequence of alternating stimuli and responses. A well-formed

black box specification is a function from the domain of the set of history-stimulus pairs

to the range of the set of responses. As a function, it will deterministically respond in the

same way for each history-stimulus pair.

We represent a black box by a table with three columns: the History Set, the

Current Stimulus, and the Response. Each stimulus and response is a discrete symbol. A

history set is a (potentially infinite) set of histories. History sets are formally specified

using history patterns. Each history pattern maps a history to a true/false value,

indicating whether or not that history is a member of the set that the pattern specifies.

The formal language for history patterns is constructed as follows. The most

primitive language element is the name of a stimulus. This matches any history with

exactly one stimulus-response pair that includes the named stimulus. A pair can also be

specified in terms of a named response; in this case, the syntax requires the keyword

“response” prior to the named response. The keyword “stim” matches any single

stimulus-response pair regardless of names. The keyword “any” matches any history,

even if it is of zero length. The keyword “none” matches zero-length histories only.

These language elements are composed into more general patterns as follows.

The “:” operator concatenates any two patterns. The concatenated pattern will match any

history that can be divided so that its first part matches the pattern before the “:” while

the second part matches the pattern after the “:”. “Count” returns the number of disjoint

sub-histories of a history that match its argument. It matches sub-histories greedily;

hence, it prefers shorter sub-histories to longer ones in ambiguous situations. The values

generated by count can be compared with each other using the standard arithmetic

comparison operators (<, >, ≥, ≤, =). They can also be incorporated into linear

combinations with addition and subtraction. The construct “includes <arg>” is equivalent

to “count <arg> ≥ 1”. Since determining membership in a history set is a boolean

operation, the standard boolean operators “and”, “or”, and “not” are available.

In order to bridge the gap between the pattern language and an application

domain, macro patterns can be defined. Each macro is a binding of a name to a pattern.

Whenever the name of the macro is used in an expression, the pattern bound to it is used

to determine whether a particular history is a match.

We will illustrate these language elements using the specification of a simple text

editor as an example. The black box specification is given in Table 1. The text editor has

three operations: appending a character onto the end of the buffer, removing a character

from the end of the buffer, and saving the buffer. To describe these operations we use

three stimuli: Char, Back, and Save.

Anytime a character is typed, it is appended to the end of the buffer. Hence, the

stimulus “Char” can be specified using a single row. Backspacing removes a character

only if at least one character is present. If the buffer is empty, backspacing is impossible.

Hence, we use two rows to specify the “Back” stimulus. Characters are present only if

the number of character additions exceeds the number of successful deletions. Hence, we

define the macro “canBackspace” to represent “count Char > count response Del”. Since

the stimulus “Back” does not always represent a successful deletion, the history pattern

matches the response “Del” in order to ensure that actual deletions are being counted.

We specify that the text editor will respond to a request to save the buffer only if

the buffer has changed since the last save, which again requires two rows. We will first

define the idea of a “change”. We will use that definition to specify “the buffer changed

since the last save”. As a change involves either the addition or successful deletion of a

character, we define the macro “change” to represent “Char or response Del”. A properly

saved buffer cannot have any changes subsequent to being saved. Hence, we define the

macro “isSaved” as “any:response Saved:(not includes change)”. We use this macro in

both rows to indicate that a save should succeed if and only if the buffer has not been

saved.

Table 1: Black Box for a Simple Text Editor

History Set Stimulus Response

Any Char Add

canBackspace Back Del

not canBackspace Back None

not isSaved Save Saved

isSaved Save None

ANALYSIS TOOL

The purpose of the analysis tool is to automatically prove whether all possible

history-stimulus pairs have specified responses, whether the black box corresponds to a

function, and whether each row in the function has a non-empty domain. We call these

properties completeness, row disjunction, and well-defined rows, respectively. We

employ two different search strategies to check these properties:

• History generation: Use best-first search to generate a history that is a member of the

specified history set. The algorithm will produce a history if it can, but might not halt if it

fails. Each syntax element in the language makes a heuristic estimate of the number of

additional stimulus-response pairs that need to be appended to a given history to enable it

to be a member of the set that the syntax element specifies. Non-terminal language

elements combine the estimates of their child nodes.

• Satisfiability checking: The boolean satisfiability of the history pattern is checked.

Every element of the expression other than “and”, “or”, and “not” is considered to be a

propositional variable. If the expression is unsatisfiable, the set is proven empty. If it is

satisfiable, nothing is concluded, as relationships between distinct propositional variables

have not been modeled.

These search strategies complement each other. For sets in which no history

exists, a proof of unsatisfiability can quickly halt a history generation that might

otherwise fail to terminate. For sets in which a history exists, the history generator can

provide a constructive existence proof. In order to check whether the rows are well-

defined, the satisfiability checker determines, for each row, whether its history set is

satisfiable. If it is, the history generator tries to generate a history for that history set.

Completeness is checked by synthesizing a boolean expression to represent the set

of all histories not covered by a history set for a given current stimulus S. Each history set

for S is negated and then wrapped into a conjunction. If this expression is unsatisfiable,

then completeness is proven for S. If a concrete history is generated for the synthesized

expression, it serves as a counterexample to the completeness property. Completeness is

proven or disproven for the black box as a whole by checking completeness for every

stimulus listed as a current stimulus. One counterexample is presented to the user for

each stimulus with an incomplete history set specification.

Row disjunction is checked in a similar way. For each pair of rows for a given

current stimulus S, the search algorithms attempt to prove that the intersection of their

history sets is the empty set. If the proof fails, a counterexample history for each

conjoined pair is presented to the user.

The property of well-defined rows is checked by generating a history for each

history set in the History Set column of the black box table. If a history can be generated

for the set in a given row, that row is reported as well-defined. If the set can be proven

unsatisfiable, that row is reported as not well-defined.

For both the GUI animation and for processing during verification, the analysis

tool must perform row matching. When a black box is presented with a history and a

current stimulus, a string-matching algorithm determines the matched row and current

response. The algorithm employs top-down dynamic programming to avoid redundant

recomputations of subsequences when using the “:” operator.

EVALUATION

We examined several black box specifications created by undergraduate students

in upper-division software engineering courses at two different institutions. Group 1 was

a Software Engineering course for juniors and seniors taught by the author. Group 2 was

a survey course in Formal Methods at a different institution, containing juniors, seniors,

and graduate students. Group 1 spent two weeks of class time learning to create black

boxes, submitting solutions at the end of this period. Later, they implemented the

specified applications. Group 2 heard one lecture on the topic and turned in black boxes

after one week. They did not implement the specified artifacts, although the author did

implement the application specified by his own solution to the exercise. The Group 1

students used the tool to build specifications for a spreadsheet-like tool (“ListMaker”), a

family-tree program, and a video game. The Group 2 students specified a simple web

browser. Table 2 contains statistics about these projects, including lines-of-code for the

finished applications. For the web browser, “lines of code” refers to the author’s

implementation.

Except for two instances from Group 2, the student-produced black boxes met the

requirements well. Except for one of the three boxes from Group 1 and two of the seven

boxes from Group 2, all boxes passed all of the verification algorithms. Three students

created boxes that met the requirements but had incompletely specified stimuli. In two

cases, the student authors were confused about how to handle unreachable histories. To

address this, following the suggestion of a third student we plan to introduce a special

“Impossible” response to model this type of situation. In Group 2, some black boxes

failed to meet the requirements resulted because of failing to use the “response” keyword.

(This was due to confusing instructions from the author.) Five of the students suggested

that something like “response” be added to the language, confirming its utility.

Table 2: Project Statistics

Program Rows Stimuli Responses Nodes Lines of Code

Genealogy 39 23 26 174 905

Game 35 26 33 172 935

List-Maker 22 13 18 141 1210

Browser 12 7 10 216 1322

Many students spoke well of the interactive animation. One student stated: ``The

test prototype GUI functioned in a way that would be very similar to a web browser,

which made testing very intuitive.'' Several others mentioned that the animation was

invaluable in finding where the specification disagreed with the requirements.

Regarding performance, best-first search required very few node expansions, as

seen in Table 2. The history patterns were small, so satisfiability checking was fast. To

analyze best-first search in more depth, we determined which imprecisions are present in

the heuristics relative to the inputs. The “and” keyword creates imprecision by

minimizing the estimate of its arguments. Observing student work, we found that “and” is

used as a filter; it was always the case that one argument was essentially negative and had

a precise distance of zero to achieve. Estimates for “response” use a complex algorithm

that is imprecise in combination with “:”. In practice, however, we saw combinations

such as “any:response Del” in which a zero estimate for “any” avoided trouble. For the

web browser, modeling the “Forward” and “Back” buttons required arithmetic that did

introduce underestimates. This explains the significantly larger number of nodes

expanded for the relatively small black box created.

RELATED WORK

Black box specification was introduced by Mills [1]. In that paper, history sets are

described by natural-language boolean conditions. This paper expands upon his work by

formalizing history sets in order to facilitate automated verification. Mills incorporated

black box specification into the Cleanroom Software Engineering process, which is

described in detail in books by Prowell et al [3] and Stavely [4].

Prowell et al [3] use sequence-based specification to verify black box

completeness. In sequence-based specification, one enumerates every possible stimulus

sequence in order of length, with all combinations and permutations considered

systematically. Sequences that are impossible or equivalent to a shorter (canonical)

sequence are not extended further. Enumeration stops when no sequences can be

extended. The canonical sequences represent a logically complete and disjoint black box.

Their proto-seq tool [5] confirms completeness by ensuring that no eligible sequences

remain to be extended. The potentially infinite set of stimulus sequences is reduced into

manageable subsets by the specification author marking related sequences as equivalent

during enumeration. In contrast, our tool requires the author to directly specify the

subsets into which the set of all stimulus sequences is to be partitioned.

The system of Heimdahl and Leveson [2] includes tabular specification with

support for checking completeness. Heimhahl and Leveson’s system specializes in

domains for which the software artifact is part of a complex embedded application. This

introduces complexities in both the specification language and in flagging false positives

that would be distracting in light of our own goals.

Kiniry and Zimmerman [6] describe how they incorporated formal methods into

their software engineering courses. They demonstrated that automated analysis tools for

formal methods greatly improved undergraduate student response to the topic.

CONCLUSION

Our analysis tool has been shown to be effective for building and analyzing black

box specifications for small GUI applications. The formal language presented in this

paper is a first step towards developing formal specifications of the boundary between

software artifacts and their environments that can be automatically verified and

systematically refined into formally annotated executable code. This language has been

shown to be quick and easy to learn for upper-division undergraduate students.

Several applications specified with black boxes have been developed to

completion; larger applications need to be specified and developed in order to explore

scalability in more depth. In general, proving completeness, row-disjunction, and row-

definition is intractable. While the specifications studied so far have avoided the cases

that provoke poor performance from our algorithm, more specifications need to be

studied to determine whether good performance should be the expected result in general.

To build on the positive responses to the animation of the specification, we are

currently developing a GUI building tool with integrated black box support. Each GUI

component is specified by a black box. The responses from input-oriented components

are mapped to the black box for the application. The responses from the application are

then mapped to output-oriented GUI components. When completed, this system will

enable students to simultaneously prototype and formally specify desktop applications.

Our analysis tool is open-source software and is freely available for downloading

from http://boundalyzer.sourceforge.net under the GNU General Public License 3.0.

REFERENCES

[1] H. D. Mills. Stepwise refinement and verification in box-structured systems. IEEE

Computer, 21(6):23–36, June 1988.

[2] M. Heimdahl, and N. Leveson. Completeness and Consistency in Hierarchical State-

Based Requirements. IEEE Trans. on Software Engineering, 22(6):363–377, June 1996.

[3] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore. Cleanroom Software

Engineering: Technology and Process. Addison-Wesley Publishing Company, Reading,

Massachusetts, 1999.

[4] A. Stavely. Toward Zero-Defect Programming. Addison-Wesley Publishing

Company, Reading, Massachusetts, 1999.

[5] Software Quality Research Laboratory at University of Tennessee Knoxville.

proto_seq User’s Guide, 2005.

[6] J. R. Kiniry and D. M. Zimmerman. Secret Ninja Formal Methods. In Proceedings of

the 15th international symposium on Formal Methods, 214-228, Turku, Finland, 2008.

