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ABSTRACT 

The black box specification, developed by Harlan Mills, addresses the problem of 

software errors that result from failing to properly specify a response for an input 

scenario. Each black box models how an artifact responds to a particular input from its 

environment. This response depends on both the current input and the entire history of 

interactions it has had with the environment. 

We have observed that students find the black box concept useful and 

comprehensible, but tedious and error-prone as well. In order to enhance the utility and 

accessibility of this technique, we have developed a formal specification language and 

analysis tool for black box specifications. The analysis tool verifies whether a black box 

is a well-formed specification. To this end, it ensures that a response is specified for 

every possible combination of inputs from the environment, that every condition is 

logically disjoint with every other condition in the specification, and that every condition 

in the specification matches at least one potential input scenario. We have evaluated the 

utility and performance of the tool with two different groups of undergraduate students. 

 

INTRODUCTION 

Many errors in software can be attributed to the failure to properly specify a 

response for an input scenario. A black box specification [1][3][4] models how a software 

artifact interacts with its environment. A black box does not represent any internal state 

of the artifact; it only represents externally observable interactions with its environment. 

This model can assist a software engineer in ensuring that a response for every input 

scenario has been specified [3]. 

We have previously introduced undergraduate students to black box specifications 

based on the presentation by Prowell et al [3]. While students informed us that the 

process was useful, they also complained about the tedium involved in constructing and 

verifying the specifications. To address this problem, we have developed a formal 

language and modeling tool. The models built in this language can be algorithmically 

analyzed by the tool to ensure that the black box is a well-formed specification. The 

analysis tool ensures that a response is specified for every possible combination of inputs 

from the environment, that every condition is logically disjoint with every other 

condition, and that every condition matches at least one potential input scenario. 

The analysis tool is also able to generate an animation of the specified software 

artifact. This animation is a GUI with a button for each stimulus. It shows both the 

current response and the entire list of responses issued so far. This allows both the 

specifier and domain experts to validate the black box against the requirements. 



We begin by presenting our representation of black box specifications. Next, we 

describe the verification algorithms employed by the analysis tool. We then discuss the 

results from our evaluation of the tool with two different groups of undergraduate 

students. We first analyze the usability and utility of the tool, followed by an analysis of 

efficiency concerns. We then discuss related work. 

 

BLACK BOX SPECIFICATION 

We call each input from the environment a stimulus and each output a response. 

A history is a finite-length sequence of alternating stimuli and responses. A well-formed 

black box specification is a function from the domain of the set of history-stimulus pairs 

to the range of the set of responses. As a function, it will deterministically respond in the 

same way for each history-stimulus pair. 

We represent a black box by a table with three columns: the History Set, the 

Current Stimulus, and the Response. Each stimulus and response is a discrete symbol. A 

history set is a (potentially infinite) set of histories. History sets are formally specified 

using history patterns.  Each history pattern maps a history to a true/false value, 

indicating whether or not that history is a member of the set that the pattern specifies.  

The formal language for history patterns is constructed as follows.  The most 

primitive language element is the name of a stimulus.  This matches any history with 

exactly one stimulus-response pair that includes the named stimulus.  A pair can also be 

specified in terms of a named response; in this case, the syntax requires the keyword 

“response” prior to the named response.  The keyword “stim” matches any single 

stimulus-response pair regardless of names.  The keyword “any” matches any history, 

even if it is of zero length.  The keyword “none” matches zero-length histories only. 

These language elements are composed into more general patterns as follows.  

The “:” operator concatenates any two patterns.  The concatenated pattern will match any 

history that can be divided so that its first part matches the pattern before the “:” while 

the second part matches the pattern after the “:”.  “Count” returns the number of disjoint 

sub-histories of a history that match its argument. It matches sub-histories greedily; 

hence, it prefers shorter sub-histories to longer ones in ambiguous situations. The values 

generated by count can be compared with each other using the standard arithmetic 

comparison operators (<, >, ≥, ≤, =). They can also be incorporated into linear 

combinations with addition and subtraction. The construct “includes <arg>” is equivalent 

to “count <arg> ≥ 1”. Since determining membership in a history set is a boolean 

operation, the standard boolean operators “and”, “or”, and “not” are available.   

In order to bridge the gap between the pattern language and an application 

domain, macro patterns can be defined.  Each macro is a binding of a name to a pattern.  

Whenever the name of the macro is used in an expression, the pattern bound to it is used 

to determine whether a particular history is a match. 

We will illustrate these language elements using the specification of a simple text 

editor as an example.  The black box specification is given in Table 1.  The text editor has 

three operations: appending a character onto the end of the buffer, removing a character 

from the end of the buffer, and saving the buffer. To describe these operations we use 

three stimuli: Char, Back, and Save. 

Anytime a character is typed, it is appended to the end of the buffer.  Hence, the 

stimulus “Char” can be specified using a single row.  Backspacing removes a character 



only if at least one character is present.  If the buffer is empty, backspacing is impossible.  

Hence, we use two rows to specify the “Back” stimulus.  Characters are present only if 

the number of character additions exceeds the number of successful deletions.  Hence, we 

define the macro “canBackspace” to represent “count Char > count response Del”.  Since 

the stimulus “Back” does not always represent a successful deletion, the history pattern 

matches the response “Del” in order to ensure that actual deletions are being counted.  

We specify that the text editor will respond to a request to save the buffer only if 

the buffer has changed since the last save, which again requires two rows.  We will first 

define the idea of a “change”.  We will use that definition to specify “the buffer changed 

since the last save”.   As a change involves either the addition or successful deletion of a 

character, we define the macro “change” to represent “Char or response Del”.  A properly 

saved buffer cannot have any changes subsequent to being saved.  Hence, we define the 

macro “isSaved” as “any:response Saved:(not includes change)”.  We use this macro in 

both rows to indicate that a save should succeed if and only if the buffer has not been 

saved. 

 

Table 1: Black Box for a Simple Text Editor 

 

History Set Stimulus Response 

Any Char Add 

canBackspace Back Del 

not canBackspace Back None 

not isSaved Save Saved 

isSaved Save None 

 

ANALYSIS TOOL 

The purpose of the analysis tool is to automatically prove whether all possible 

history-stimulus pairs have specified responses, whether the black box corresponds to a 

function, and whether each row in the function has a non-empty domain. We call these 

properties completeness, row disjunction, and well-defined rows, respectively. We 

employ two different search strategies to check these properties: 

• History generation: Use best-first search to generate a history that is a member of the 

specified history set. The algorithm will produce a history if it can, but might not halt if it 

fails. Each syntax element in the language makes a heuristic estimate of the number of 

additional stimulus-response pairs that need to be appended to a given history to enable it 

to be a member of the set that the syntax element specifies. Non-terminal language 

elements combine the estimates of their child nodes. 

• Satisfiability checking: The boolean satisfiability of the history pattern is checked. 

Every element of the expression other than “and”, “or”, and “not” is considered to be a 

propositional variable. If the expression is unsatisfiable, the set is proven empty. If it is 

satisfiable, nothing is concluded, as relationships between distinct propositional variables 

have not been modeled. 

These search strategies complement each other. For sets in which no history 

exists, a proof of unsatisfiability can quickly halt a history generation that might 

otherwise fail to terminate. For sets in which a history exists, the history generator can 



provide a constructive existence proof. In order to check whether the rows are well-

defined, the satisfiability checker determines, for each row, whether its history set is 

satisfiable. If it is, the history generator tries to generate a history for that history set. 

Completeness is checked by synthesizing a boolean expression to represent the set 

of all histories not covered by a history set for a given current stimulus S. Each history set 

for S is negated and then wrapped into a conjunction. If this expression is unsatisfiable, 

then completeness is proven for S. If a concrete history is generated for the synthesized 

expression, it serves as a counterexample to the completeness property. Completeness is 

proven or disproven for the black box as a whole by checking completeness for every 

stimulus listed as a current stimulus. One counterexample is presented to the user for 

each stimulus with an incomplete history set specification. 

Row disjunction is checked in a similar way. For each pair of rows for a given 

current stimulus S, the search algorithms attempt to prove that the intersection of their 

history sets is the empty set. If the proof fails, a counterexample history for each 

conjoined pair is presented to the user. 

The property of well-defined rows is checked by generating a history for each 

history set in the History Set column of the black box table. If a history can be generated 

for the set in a given row, that row is reported as well-defined. If the set can be proven 

unsatisfiable, that row is reported as not well-defined. 

For both the GUI animation and for processing during verification, the analysis 

tool must perform row matching. When a black box is presented with a history and a 

current stimulus, a string-matching algorithm determines the matched row and current 

response. The algorithm employs top-down dynamic programming to avoid redundant 

recomputations of subsequences when using the “:” operator. 

 

EVALUATION 

We examined several black box specifications created by undergraduate students 

in upper-division software engineering courses at two different institutions. Group 1 was 

a Software Engineering course for juniors and seniors taught by the author. Group 2 was 

a survey course in Formal Methods at a different institution, containing juniors, seniors, 

and graduate students. Group 1 spent two weeks of class time learning to create black 

boxes, submitting solutions at the end of this period. Later, they implemented the 

specified applications. Group 2 heard one lecture on the topic and turned in black boxes 

after one week. They did not implement the specified artifacts, although the author did 

implement the application specified by his own solution to the exercise. The Group 1 

students used the tool to build specifications for a spreadsheet-like tool (“ListMaker”), a 

family-tree program, and a video game. The Group 2 students specified a simple web 

browser. Table 2 contains statistics about these projects, including lines-of-code for the 

finished applications. For the web browser, “lines of code” refers to the author’s 

implementation. 

Except for two instances from Group 2, the student-produced black boxes met the 

requirements well. Except for one of the three boxes from Group 1 and two of the seven 

boxes from Group 2, all boxes passed all of the verification algorithms. Three students 

created boxes that met the requirements but had incompletely specified stimuli. In two 

cases, the student authors were confused about how to handle unreachable histories. To 

address this, following the suggestion of a third student we plan to introduce a special 



“Impossible” response to model this type of situation. In Group 2, some black boxes 

failed to meet the requirements resulted because of failing to use the “response” keyword. 

(This was due to confusing instructions from the author.) Five of the students suggested 

that something like “response” be added to the language, confirming its utility. 

 

Table 2: Project Statistics 

Program Rows Stimuli Responses Nodes Lines of Code 

Genealogy 39 23 26 174 905 

Game 35 26 33 172 935 

List-Maker 22 13 18 141 1210 

Browser 12 7 10 216 1322 

 

Many students spoke well of the interactive animation. One student stated: ``The 

test prototype GUI functioned in a way that would be very similar to a web browser, 

which made testing very intuitive.'' Several others mentioned that the animation was 

invaluable in finding where the specification disagreed with the requirements. 

Regarding performance, best-first search required very few node expansions, as 

seen in Table 2. The history patterns were small, so satisfiability checking was fast. To 

analyze best-first search in more depth, we determined which imprecisions are present in 

the heuristics relative to the inputs. The “and” keyword creates imprecision by 

minimizing the estimate of its arguments. Observing student work, we found that “and” is 

used as a filter; it was always the case that one argument was essentially negative and had 

a precise distance of zero to achieve. Estimates for “response” use a complex algorithm 

that is imprecise in combination with “:”. In practice, however, we saw combinations 

such as “any:response Del” in which a zero estimate for “any” avoided trouble. For the 

web browser, modeling the “Forward” and “Back” buttons required arithmetic that did 

introduce underestimates. This explains the significantly larger number of nodes 

expanded for the relatively small black box created. 

 

RELATED WORK 

Black box specification was introduced by Mills [1]. In that paper, history sets are 

described by natural-language boolean conditions. This paper expands upon his work by 

formalizing history sets in order to facilitate automated verification. Mills incorporated 

black box specification into the Cleanroom Software Engineering process, which is 

described in detail in books by Prowell et al [3] and Stavely [4].   

Prowell et al [3] use sequence-based specification to verify black box 

completeness. In sequence-based specification, one enumerates every possible stimulus 

sequence in order of length, with all combinations and permutations considered 

systematically. Sequences that are impossible or equivalent to a shorter (canonical) 

sequence are not extended further. Enumeration stops when no sequences can be 

extended. The canonical sequences represent a logically complete and disjoint black box. 

Their proto-seq tool [5] confirms completeness by ensuring that no eligible sequences 

remain to be extended. The potentially infinite set of stimulus sequences is reduced into 

manageable subsets by the specification author marking related sequences as equivalent 

during enumeration. In contrast, our tool requires the author to directly specify the 

subsets into which the set of all stimulus sequences is to be partitioned. 



The system of Heimdahl and Leveson [2] includes tabular specification with 

support for checking completeness. Heimhahl and Leveson’s system specializes in 

domains for which the software artifact is part of a complex embedded application. This 

introduces complexities in both the specification language and in flagging false positives 

that would be distracting in light of our own goals. 

Kiniry and Zimmerman [6] describe how they incorporated formal methods into 

their software engineering courses.  They demonstrated that automated analysis tools for 

formal methods greatly improved undergraduate student response to the topic. 

 

CONCLUSION 

Our analysis tool has been shown to be effective for building and analyzing black 

box specifications for small GUI applications. The formal language presented in this 

paper is a first step towards developing formal specifications of the boundary between 

software artifacts and their environments that can be automatically verified and 

systematically refined into formally annotated executable code. This language has been 

shown to be quick and easy to learn for upper-division undergraduate students. 

Several applications specified with black boxes have been developed to 

completion; larger applications need to be specified and developed in order to explore 

scalability in more depth. In general, proving completeness, row-disjunction, and row-

definition is intractable. While the specifications studied so far have avoided the cases 

that provoke poor performance from our algorithm, more specifications need to be 

studied to determine whether good performance should be the expected result in general. 

To build on the positive responses to the animation of the specification, we are 

currently developing a GUI building tool with integrated black box support. Each GUI 

component is specified by a black box. The responses from input-oriented components 

are mapped to the black box for the application. The responses from the application are 

then mapped to output-oriented GUI components. When completed, this system will 

enable students to simultaneously prototype and formally specify desktop applications. 

Our analysis tool is open-source software and is freely available for downloading 

from http://boundalyzer.sourceforge.net under the GNU General Public License 3.0.   
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