
Creating Visual Reactive Robot Behaviors Using Growing Neural Gas

Gabriel J. Ferrer
Department of Mathematics and Computer Science

Hendrix College
1600 Washington Ave.

Conway, Arkansas 72032

Abstract

Creating reactive robot behaviors that rely solely on vi-
sual input is tricky due to the well-known problems in-
volved with computer vision. This paper presents a po-
tential solution to this problem. The robot builds repre-
sentations of its target environment using Growing Neu-
ral Gas. The robot programmer then specifies its behav-
ior for each learned node. This approach is shown to
have the potential to be effective for simplifying robot
behavior programming in an indoor environment with
low-cost hardware.

Programming reactive behaviors (Brooks 1986) on a robot
equipped with basic sensors such as touch sensors and
sonars is reasonably straightforward and well-understood.
Despite considerable progress in computer vision tech-
niques, use of camera images to direct reactive behaviors
remains tricky. Considerable effort is often invested in com-
puter vision algorithms that are specialized for a particular
environment. (Horswill 1994)

Unsupervised learning algorithms have proven to be pop-
ular tools for computer vision, especially neural network
models such as the Self-Organizing Map (Kohonen 2001)
and Growing Neural Gas (Fritzke 1995). These algorithms
derive abstractions of subsets of image sets that can be used
for later classification of previously unseen images.

This paper describes an application of unsupervised learn-
ing, specifically Growing Neural Gas (GNG) to the problem
of programming reactive behaviors when using computer vi-
sion as the principal sensor for a mobile robot. Behavior pro-
gramming is a two-stage process. First, the robot builds a
GNG network as it explores its environment. Subsequently,
the programmer specifies the desired action for each learned
GNG cluster. Once this specification is complete, the robot
selects its actions based on the GNG cluster that is the clos-
est match to the current input image.

Learning the Environment
Unsupervised Learning
Unsupervised learning algorithms, such as k-means (Forgey
1965) (MacQueen 1967), the self-organizing map (SOM)
(Kohonen 2001), and Growing Neural Gas (GNG) (Fritzke
1995), operate by partitioning their training inputs into clus-
ters based on a distance metric. Each cluster is defined as a

Figure 1: Portrait of the Robot

representative example of the input space. Each represen-
tative example is arithmetically derived (in an algorithm-
dependent manner) from the training inputs.

Both k-means and self-organizing maps require a fixed
number of clusters to be specified in advance. Growing neu-
ral gas adaptively determines the number of clusters based
on its inputs. In the interest of allowing the inputs to deter-
mine the number of clusters, we selected GNG for this task.

Growing Neural Gas
Growing Neural Gas is an artificial neural network that is
trained using an unsupervised learning algorithm. The net-
work is an undirected weighted graph. In this implementa-
tion, both the network inputs and the network nodes are 2D
grayscale images. When an input is presented to the net-
work, the Euclidean distance between the input and each
node is calculated. The node with the shortest distance rela-
tive to the input becomes the active node.

Each edge connects two nodes that are active in response
to similar inputs. The edge weight reflects the frequency
with which the pair has been responsive in tandem; it is re-
set to zero whenever this occurs. Large weights denote weak
connections that are eventually purged. Nodes who lose all



their edges are purged as well.

Training In each iteration of training, a single input is pre-
sented to the network. The network is then adjusted as fol-
lows:
• Identify the nodes that are the closest and second-closest

matches to the input.
• Adjust edge weights.
• Update error and utility values.
• Create a new node.
• Purge edges and nodes.

In the training process, two nodes are identified: the node
with the shortest distance to the input, and the node with
the second-shortest distance. If an edge is present between
them, its weight is reset to zero; otherwise, a new edge is
created between them with a weight of zero. All other edges
adjoining the winning node are increased by one.

The values of each image pixel pxy for the winning node
and each of its neighbors are updated as follows relative to
each input pixel qxy:

pxy = pxy + α(qxy − pxy)

The learning rate parameter α is significantly larger for
the winning node in comparison to the lower value used for
the neighboring nodes.

Error and Utility Each node maintains error and utility
values. The purpose of the error value is to identify nodes
that, while they are frequently the best matching node for
a variety of inputs, are still not very close matches. These
nodes, then, represent parts of the input space that are not ad-
equately covered by the current set of nodes. The purpose of
the utility value is to identify nodes that are distinctive rela-
tive to their neighbors. Nodes with high utility are frequently
much closer matches to many inputs than their neighbors.

On each training iteration, these values are updated as fol-
lows:
• For the winning node:

– Increase the error for the winning node by the Eu-
clidean distance to the input.

– Subtract the distance to the winning node from the dis-
tance to the second-best node. Add this difference to
the utility.

• For each node n:
– Reduce the error and utility values using a decay con-

stant β (0 < β < 1) as follows:
∗ errorn = errorn − β × errorn
∗ utilityn = utilityn − β × utilityn

Creating New Nodes An integer parameter λ controls the
creation of new nodes. The frequency of node creation is
inversely proportional to lambda; low values imply frequent
introduction of new nodes.

Every λ iterations, a new node is created as follows:
• Find the node m with the largest error value in the net-

work.

• Find its neighbor n with the largest error value among all
of m’s neighbors.

• Create an image by averaging the corresponding pixel val-
ues of m and n.

• Create a new node p using:
– The averaged image
– The mean of the errors of m and n
– The maximum of the utility values of m and n

• Break the edge between m and n.
• Add an edge of weight zero betweenm and p, and another

between n and p.
• Divide the error and utility values for each of m and n by

two.

Purging Edges and Nodes On each iteration, every edge
whose weight exceeds a specified limit is purged. If any node
has all its edges purged, that node is purged as well.

In addition, for every node the utility ratio is calculated
(Fritzke 1997). The largest error of any node, emax, is de-
termined. The utility ratio for each node n with utility un

is emax

un
. The node with the single largest utility ratio is the

most useless node. If its ratio exceeds a parameter k, it is
purged.

Training and Programming
Our robot is equipped with a controller that allows the pro-
grammer to drive it around its environment. As the robot is
driven around, the first two images it acquires become the
first two nodes of Growing Neural Gas. Each subsequent
image acquired is used for one iteration of training the GNG
network. Training ends upon a signal from the programmer.
The GNG network is then saved for later use.

We slightly modified how the GNG learning algorithm de-
cides to create new nodes. When the programmer changes
the robot’s command, it is typically in response to a stim-
ulus the programmer perceives. Consequently, whatever the
robot is sensing at that time has the potential to be very im-
portant. Following this intuition, a new GNG node is created
and λ is reset to zero whenever the programmer changes the
robot’s movement.

When the GNG training process is complete, the pro-
grammer runs an application that shows all of the GNG
nodes. Each node is annotated with a GUI component that
allows the programmer to select an action to correspond to
that node. A screenshot of the action selection application
is given in Figure 2. When the programmer has selected an
action for every node, a controller is generated. When the
controller executes, as each image is acquired it is presented
to the GNG network. The action specified for the winning
node is immediately executed.

Experiments
Configuration and Training
The experimental goal was to train the robot to be familiar
with a particular room, such that it could wander the room
without hitting anything. The robot is a Lego Mindstorms



Figure 2: Selecting Actions for GNG Nodes

NXT. To enable image processing, a Dell Inspiron Mini Net-
book equipped with a webcam was placed atop the robot to
control it via a USB cable. The configured robot is shown in
Figure 1.

The webcam images were acquired at a size of 640x480
pixels. Each image was averaged to produce a grayscale im-
age upon acquisition, with each pixel value ranging from 0
to 255. Each grayscale image was scaled down to 160x120
prior to being applied as an input to the GNG network. The
first two GNG nodes are the first two images acquired. This
configuration enabled images to be acquired and processed
and learning to occur at about 15-16 frames per second.
Given a robot velocity of 17 cm/s, it processes about one
frame per centimeter of travel.

The GNG algorithm was parameterized as follows:
• Maximum edge age: 100
• Learning rate (winning node): 0.05
• Learning rate (neighboring nodes): 0.0006
• Maximum utility ratio (k): 4
• Iterations per node creation (λ): 200
• Error decay (β) per iteration: 0.0005

Most of the parameters were taken directly from the ex-
periments described by (Holmstrom 2002). As noted above,
every change of command results in the creation of a new
node. The λ value of 200, then, was selected to ensure the
creation of a new node after, at most, two meters of travel.

The GNG network was trained by driving the robot
around the room for several minutes. The trained network
had 26 nodes (depicted in Figure 2) by the completion of the
run.

Action Selection
Actions were selected by visually examining the refer-
ence images for each GNG node and determining an ap-
propriate action for the match. To keep things simple,
only three actions were used: FORWARD, BACK_LEFT, and
BACK_RIGHT.

For some reference images, the choice of action was clear.
In Figure 3, we see an example where going forward is the
obvious choice, as there is plenty of clear floor space. Figure
4 is an example of a clear choice of a turn, as the wall is very
close.

Figure 3: Forward

Figure 4: Turn

In other cases, the choice was less clear, and it had to be
altered after experimentation. The action for Figure 5 was
originally FORWARD, but it was changed to a turn after it was



observed that moving forward in that situation led to a col-
lision. The action for Figure 6 was originally BACK_LEFT,
but it was changed to FORWARD when it was observed that
this action caused the robot to turn in the middle of the room.
Subsequent reflection led to the conclusion that the reference
image displays considerably more floor space than was orig-
inally thought when the first action was selected. Overall,
four out of the 26 actions were changed during the course of
experimentation.

Figure 5: Forward, later revised

Figure 6: Turn, later revised

Observed Robot Behavior
For the GNG network shown in Figure 2, three revisions
were made to the original action selection, resulting in four
total versions. (The actions shown in Figure 2 represent the

final version.) The first version produced a robot behavior
that countered virtually every forward motion with a back-
ward motion. The result was a robot that rarely hit anything,
but also made very little progress. Gradual refinement of the
action selection produced a robot (Version 4) that avoided
obstacles successfully while maintaining consistent forward
motion. The GNG-based controller runs at about 10 frames
per second, somewhat slower than the training phrase.

Figure 7 illustrates the effect of refined action selection
on forward motion. The vertical axis denotes the percentage
of the time that the robot spent moving forward rather than
turning. For the first three versions, the data is the average of
two runs. (After two runs, the observed behavior was found
sufficiently frustrating that actions were altered immediately
in light of the observed behavior.) For the considerably more
satisfying fourth version, the average of seven runs is given.
The ”Human” value denotes the percentage of forward mo-
tion for a single run of a human piloting the robot, maximiz-
ing forward motion while avoiding obstacles.

Figure 7: Forward Motion

Figure 8 shows the number of seconds the robot was able
to run before striking an obstacle. All runs were for the
fourth and final version of action selection depicted in Fig-
ure 2. For each run, the robot started moving from the same
position in our lab. While it generally did well in avoiding
obstacles, there were a couple of locations that consistently
caused problems. The long duration for the second run re-
flects a situation in which the robot was fortunate to avoid
the problematic areas for a considerable period of time.

A representative example of a problematic node is node
24, depicted in Figure 9. The lower part depicts open
floorspace, while the upper part shows artifacts of several
obstacles. Nodes 3, 10, and 16 exhibit similar ambiguities
and caused similar problems. Node 18 (in Figure 3) was nor-
mally a strong contributor to forward motion; however, it ap-
pears that the checkerboard pattern on the floor may have led
even this node into ambiguous situations. Node 17 exhibited



Figure 8: Time until collision

the same issue. The most ironic example is Node 2 (in Figure
6), which had originally been designated as a BACK_LEFT
node but which was changed to FORWARD due to unwanted
turns. Node 2 is a combination of floor and wall with a very
ambiguous boundary; not all of the turns it triggered turned
out to be ”unwanted”.

Figure 9: Node 24

What all of these nodes have in common is that they were
otherwise used heavily to trigger productive forward motion.
Unfortunately, several locations in our environment proved
consistently problematic due to these ambiguities. Giving all
of these nodes turn-action designations would have resulted
in a significant loss of forward motion. We hypothesize that
the underlying problem is that the GNG network needs more
nodes to overcome these ambiguities.

Analysis
The results of this preliminary study are very promising. As
long as the robot was not exposed to problematic locations,

it avoided obstacles perfectly while maintaining significant
forward motion. Devising and improving the action configu-
ration proved to be straightforward; simple tweaks produced
significant incremental performance improvements. We are
considering the following avenues to improve performance.

Merging GNG Networks
Relying upon a single training run to produce a usable GNG
interferes with what should naturally be an iterative process
of carefully debugging the robot’s behavior. By using the ini-
tial GNG network as a starting point, additional training runs
could be conducted in the physical vicinity of problematic
locations in order to help introduce new nodes to overcome
ambiguities.

A related approach would be to incorporate the ability to
merge GNG networks derived from separate training runs.
This would be an alternative means to enable the program-
mer to “patch” the robot’s knowledge of troublesome areas
while still retaining the positive aspects of the initially cre-
ated network.

Implicit Action Selection
An alternative to manual action selection would be a two-
phase piloting approach. In the first piloted run, the GNG
network would be built. During the second run, popularity
of actions selected by the pilot would be tracked for each
winning node. In this way, action selection would be im-
plicit rather than explicit. This would be especially useful
in allowing this technique to scale to GNG networks with
significantly larger numbers of nodes.

Furthermore, this could enable the early identification
of ambiguous nodes. Nodes that map onto locations with
clear actions would exhibit uniformity in the actions selected
on their behalf. Nodes with conflicting action designations
could serve as an early signal for trouble, and a focus for
efforts to improve the underlying GNG network.

Related Work
Growing Neural Gas has been applied to robotic systems
for numerous purposes beyond that proposed in this paper,
including localization (Baldassarri et al. 2003) (Yan, We-
ber, and Wermter 2012), modeling the physical structure of
the environment (Kim, Cho, and Kim 2003), (Shamwell et
al. 2012), and control via gesture recognition (Yanik et al.
2012).

A representative example of a system that uses artificial
neural networks to simplify the programming of reactive be-
haviors is (Cox and Best 2004). In their system, the pro-
grammer specifies motor settings for various combinations
of sensor values that a simulated robot encounters. A multi-
layer perceptron is employed to generalize the motor set-
tings to sensor combinations that had not been previously
encountered. The simulated sensors are three infrared sen-
sors and two bump sensors. It is not at all clear how this ap-
proach would scale to the much greater complexity of visual
input. Our work, by exploiting the inherent intelligibility of
the reference images of the GNG clusters, provides the pro-
grammer with meaningful abstractions of the visual input
for which actions can then be coherently specified.



(Touzet 2006) employs self-organizing maps (Kohonen
2001) to build models of a physical robot’s environment and
the effect of performing actions in certain states. The de-
sired behavior is then specified in terms of targeted sensor
values. For the range sensors they employed, specific win-
dows of target values are specified in order to induce the
target behavior. When using computer vision as a sensor,
creating such windows of target values is impractical. The
GNG cluster reference images provide a usable alternative.

In (Gunderson and Gunderson 2008), an agent architec-
ture is presented that is centered around the issue of reifi-
cation. Each object to be perceived is represented by a
PerCept that binds a sensor-derived signature to a sym-
bolic component that can be manipulated by the symbolic
reasoning engine. The authors describe how a chair, for ex-
ample, can be described based on a pattern of readings from
multiple sonars. When using camera input, the scheme de-
scribed in this paper could provide a useful means of defin-
ing sensor signatures for objects that are to be visually iden-
tified, by assigning identification tags to cluster reference
images rather than actions.

Conclusion
Growing Neural Gas is an effective technique for creating a
model of a robot’s environment that simplifies the program-
ming of reactive behaviors relying on visual input. It runs
sufficiently fast for real-time processing, both when learn-
ing and when selecting actions.

Significant work remains to be done to improve upon the
results of this preliminary study. A particular focus will be
made on investigating techniques for iterative refinement of
the GNG network, as well as the incorporation of informa-
tion from a piloted phase targeted at determining appropriate
action selection.

References
Baldassarri, P.; Puliti, P.; Montesanto, A.; and Tascini, G.
2003. Self-organizing maps versus growing neural gas in
a robotic application. In Mira, J., and lvarez, J. R., eds.,
IWANN (2), volume 2687 of Lecture Notes in Computer Sci-
ence, 201–208. Springer.
Brooks, R. A. 1986. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Automation
2(10).
Cox, P. T., and Best, S. M. 2004. Programming an au-
tonomous robot controller by demonstration using artificial
neural networks. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing, 157–
159.
Forgey, E. 1965. Cluster analysis of multivariate data:
Efficiency vs. interpretability of classification. Biometrics
21(768).
Fritzke, B. 1995. A growing neural gas network learns
topologies. In Advances in Neural Information Processing
Systems 7, 625–632. MIT Press.
Fritzke, B. 1997. A self-organizing network that can fol-
low non-stationary distributions. In Gerstner, W.; Germond,

A.; Hasler, M.; and Nicoud, J. D., eds., Proceedings of the
Seventh International Conference on Artificial Neural Net-
works: ICANN-97, volume 1327 of Lecture Notes in Com-
puter Science, 613–618. Berlin; New York: Springer-Verlag.
Gunderson, L. F., and Gunderson, J. P. 2008. Robots, Rea-
soning, and Reification. Springer.
Holmstrom, J. 2002. Growing neural gas: Experiments with
gng, gng with utility and supervised gng. Master’s thesis,
Uppsala University, Department of Information Technology
Computer Systems Box 337, SE-751 05 Uppsala, Sweden.
Horswill, I. 1994. Visual collision avoidance by segmen-
tation. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 902–909. IEEE
Press.
Kim, M. Y.; Cho, H.; and Kim, J. 2003. Obstacle modeling
for environment recognition of mobile robots using grow-
ing neural gas network. International Journal of Control,
Automation, and Systems 1(1).
Kohonen, T. 2001. Self-Organizing Maps. Springer, 3rd
edition.
MacQueen, J. 1967. Some methods for classification and
analysis of multivariate observations. In Proc. of the Fifth
Berkeley Symposium on Math. Stat. and Prob., 281–296.
Shamwell, J.; Oates, T.; Bhargava, P.; Cox, M. T.; Oh, U.;
Paisner, M.; and Perlis, D. 2012. The robot baby and mas-
sive metacognition: Early steps via growing neural gas. In
ICDL-EPIROB, 1–2. IEEE.
Touzet, C. 2006. Modeling and simulation of elementary
robot behaviors using associative memories. International
Journal of Advanced Robotic Systems 3(2):165–170.
Yan, W.; Weber, C.; and Wermter, S. 2012. A neural ap-
proach for robot navigation based on cognitive map learn-
ing. In IJCNN, 1–8. IEEE.
Yanik, P.; Manganelli, J.; Merino, J.; Threatt, A.; Brooks,
J. O.; Green, K. E.; and Walker, I. D. 2012. Use of kinect
depth data and growing neural gas for gesture based robot
control. In PervasiveHealth, 283–290. IEEE.


