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Abstract

A machine learning algorithm for image classification ex-
hibits spatial bias if permuting the order of image pixels sig-
nificantly alters its classification accuracy. In this paper, we
explore the spatial bias of a number of different distance met-
rics for k-nearest-neighbor image classification. One distance
metric is inspired by the convolutional kernels employed in
convolutional neural networks. The other metrics are based
on BRIEF descriptors, which generate bit vectors correspond-
ing to images based on comparisons of pixel intensity values.
We found that the convolutional distance metric exhibited a
strong positive spatial bias, as did one of the BRIEF descrip-
tors. Another BRIEF descriptor exhibited a negative spatial
bias, and the remainder exhibited little or no spatial bias.
These results lay a foundation for future work that would in-
volve larger numbers of convolutional iterations, potentially
synergized with BRIEF-style image preprocessing. The com-
plete implementation of the work in this paper is available
online at https://github.com/gjf2a/flairs33.

Introduction
(Mitchell and Sheppard 2019) observed that Convolutional
Neural Networks (CNNs) (LeCun et al. 1998) rely upon spa-
tial bias for their strong classification performance. A clas-
sifier with spatial bias will perform differently if the order-
ing of input features is permuted. Inspired by the success of
(Mitchell and Sheppard 2019) in the incorporation of spatial
bias into Random Forest classifiers, this paper describes a
preliminary investigation of how spatial bias can impact the
error rates of k-nearest-neighbor classifiers (Peterson 2009)
using different types of distance metrics.

The BRIEF descriptor (Calonder et al. 2010) is an im-
age descriptor that has been widely employed in the robotics
community due to the relatively low amount of calculation
necessary to determine distances between images that have
been preprocessed with this descriptor. In light of the high
computational requirements of CNNs, this work seeks to de-
termine whether a kNN classifier employing BRIEF descrip-
tors as an image preprocessing step can leverage spatial bias
to improve classification performance.

We also implemented two kNN distance metrics based on
Euclidean image distance to serve as benchmarks for perfor-
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mance. The first is a standard L2 Euclidean distance met-
ric. The second is based on finding and exploiting convolu-
tional kernels, and is intended to demonstrate the impact of
a strong spatial bias.

We found that, out of the six variations of the BRIEF de-
scriptor we evaluated, two of them exhibit spatial bias. In
one case, the spatial bias was positive; in the other case, it
was negative, a surprising and interesting result. The con-
volutional variation of the Euclidean distance we employed
as a benchmark also exhibited positive spatial bias. These
results demonstrate that spatial bias is not, by itself, a guar-
antee of performance improvement; certain types of spatial
bias actively hinder good performance.

Spatial Bias
The importance of spatial relationships among the pixels
within an image can be readily perceived by imagining that
the pixels of a digital image have been randomly permuted.
This process creates an image that is unrecognizable to a
human, thus indicating that these spatial relationships are es-
sential for human image recognition. It must then be recog-
nized as supremely ironic that many machine learning algo-
rithms for image classification typically ignore these spatial
relationships.

A rigorous formulation of this intuition is given by
(Mitchell and Sheppard 2019), who employ image permu-
tation to demonstrate whether a machine learning algorithm
exhibits a spatial bias. In their study, algorithms exhibiting
a spatial bias demonstrate lower classification error rates
than algorithms lacking a spatial bias. This result is intu-
itive given the clear utility of spatial relationships in human
image recognition. Their results with introducing a positive
spatial bias to a random forest image classifier additionally
suggest the utility of discovering new ways of incorporating
spatial bias into many different machine learning algorithms
applied to image classification tasks.

Distance Metrics
Euclidean Metrics
Our experimental baseline is the L2 Euclidean distance met-
ric, which we calculate as the sum of squared differences of
corresponding pixel intensity values. As a straightforward
pairwise metric, it exhibits no spatial bias.



-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Figure 1: Horizontal and Vertical Canny Edge Detectors

We also employ a convolutional variation of this metric
that we developed, inspired by the convolutional layers of
a convolutional neural network. (LeCun et al. 1998) In im-
age processing, a convolutional kernel is a small mask that
when superimposed on the neighborhood of a pixel gener-
ates a strong response if the pixel neighborhood matches the
feature encoded by the kernel, and a weak response other-
wise.

A well-known application of convolutional kernels is
edge detection. By using two different kernels, one repre-
senting horizontal change and the other representing vertical
change, multiplying the kernel values by the corresponding
pixel intensity values, and adding up the resulting values, we
can represent the ”edginess” of a pixel based on the mag-
nitude of the response. Two such kernels are presented in
Figure 1; these are the Canny edge detectors.

A weakness of this approach is that humans must hand-
design convolutional kernels that are then expected to prop-
erly match the characteristics of the images that they pro-
cess. A key contribution of the convolutional neural network
is to employ an unsupervised learning algorithm to automat-
ically extract from the training images a set of convolutional
kernels that represent features actually present in that spe-
cific set of images. The response of each pixel neighbor-
hood to the extracted kernels can then be measured by the
L2 Euclidean distance between the neighborhood and each
extracted kernel. In fact, each pixel neighborhood can be fil-
tered through each kernel to produce an output image cor-
responding to that kernel. In the output image, the intensity
of each pixel corresponds to the distance between the pixel’s
neighborhood and the kernel.

By projecting an image through n convolutional kernels,
we generate n output images. Because these images are de-
rived from the relationships among a pixel and its neighbor-
ing pixels, we hypothesized that applying the L2 Euclidean
distance between lists of output images would have a spatial
bias.

Our implementation of the convolutional concept follows
the algorithm below, which produces a list of one output im-
age per convolutional kernel.
• Use k-means++ (Arthur and Vassilvitskii 2007) to create

eight clusters from all of the 3x3 subimages of all of the
training images. These clusters serve as our convolutional
kernels.

• For each image
– For each convolutional kernel (i.e., the k-means clus-

ters)
∗ For each pixel from the image (with a stride of 2)
· Find the Euclidean distance between the 3x3 subim-

age surrounding the pixel and the current convolu-
tional kernel.

· Scale the distance down to the range of possible pixel
values.

· Set the corresponding pixel in the output image for
that kernel to the scaled distance value.

For each input image, this produces eight output images,
each of which has one-quarter the pixels of the original in-
put image. The distance metric is the sum of the Euclidean
distances between the eight output images of each original
image being compared.

BRIEF Metrics
A BRIEF descriptor is a bit vector generated from an input
image using a list of test pairs of (x, y) coordinates. If the
pixel intensity of the first pair is less than that of the second
pair, the BRIEF descriptor value for that pair is set to one;
otherwise, it is set to zero. The bit vector representation is
highly appealing. The Hamming distance between two im-
ages represented as BRIEF descriptors is calculated by find-
ing the exclusive-or of the two bit vectors and then counting
the number of bits set to one.

For all of our experiments, we employed 6,272 pairs of
pixels (28x28 image, eight pairs per pixel) to calculate each
BRIEF descriptor. The pairs were generated in the follow-
ing ways, the first two of which (denoted “Classical”) were
introduced in (Calonder et al. 2010), the last four of which
were devised for this paper:

1. Uniform Classical BRIEF: Select each x and y coordi-
nate with uniform probability.

2. Gaussian Classical BRIEF: Select each x and y coor-
dinate from a Gaussian distribution. We set the mean at
the center of the image and the standard deviation as one-
sixth of the size of the side of the image. This introduces
a bias in favor of points closer to the center of the image.

3. 3x3 Neighbor BRIEF: For each pixel in the image, cre-
ate a pair between that pixel and each of the eight pixels
neighboring that pixel.

4. Uniform Neighbor BRIEF: For each pixel in the image,
select eight other pixels with uniform probability.

5. Gaussian Neighbor BRIEF (13 ): For each pixel in the im-
age, select eight other pixels from a Gaussian distribution.
The mean of the distribution is the location of the pixel.
The standard deviation is one-third the size of the side of
the image.

6. Gaussian Neighbor BRIEF ( 17 ): Same as above, except
with standard deviation at one-seventh the size of the side
of the image.

Aside from 3x3 Neighbor BRIEF, all of the lists of test
pairs were randomly generated. The lists were generated
only once; every training and testing image was filtered us-
ing the exact same list of test pairs for each algorithm. Be-
cause each pair describes a relationship between the inten-
sity values of two distinct pixels at different locations in
the image, we hypothesized that BRIEF distances in general
would exhibit spatial bias.



Error Rates (%)

Distance Metric Original Permuted

Euclidean 3.12 3.08
Convolutional Euclidean 2.72 6.09
Uniform Classical BRIEF 3.47 3.54
Gaussian Classical BRIEF 3.98 5.54
3x3 Neighbor BRIEF 5.42 3.39
Uniform Neighbor BRIEF 3.44 3.47
Gaussian Neighbor BRIEF ( 13 ) 3.23 3.44
Gaussian Neighbor BRIEF ( 17 ) 3.47 3.41

Table 1: MNIST Error Rates (%)

Experimental Evaluation
The full source code for these experiments is available
for download and experimentation: https://github.
com/gjf2a/flairs33.

For all experiments, we employed k-nearest-neighbor
with k = 7 on the MNIST database of handwritten digits
(LeCun, Cortes, and Burges 1998). Image permutation was
implemented by shuffling an array containing all of the pixel
indices and then reordering the pixels according to the shuf-
fled index ordering.

From the data in Figure 1, we can see that Euclidean,
Uniform Classical BRIEF, and the Gaussian and Uniform
Neighbor BRIEF variants are largely permutation-invariant,
and hence lack spatial bias. Convolutional Euclidean and
Gaussian Classical BRIEF perform considerably worse on
the permuted images, thus showing a positive spatial bias.
3x3 Neighbor BRIEF performs considerably better on the
permuted images, showing a negative spatial bias.

The Convolutional Euclidean has both a fairly drastic er-
ror rate difference in comparison to the permuted image, and
is also the only metric we evaluated with a lower error rate
than the simple Euclidean. This demonstrates that the convo-
lutional approach successfully encodes spatial information
in the kernel projections, as we would have expected given
the success of this approach with convolutional neural net-
works.

Gaussian Classical BRIEF performs a Gaussian sampling
that prefers to select pixels near the middle of the image.
In the handwriting samples in the MNIST data set, most of
the distinctive information is located closer to the middle of
the image; the pixels towards the boundaries are almost all
background pixels. By permuting the images, many pixels
with distinctive information are exiled to the boundary areas
of the image which Gaussian Classical BRIEF ignores. The
comparison with the very similar Uniform Classical BRIEF
metric is illuminating. Since Uniform Classical BRIEF se-
lects its pixel pairs uniformly, permutation has demonstrably
minimal impact on its performance.

The negative spatial bias of 3x3 Neighbor BRIEF is at-
tributable to the fact that selecting pixel pairs of exclusively
consecutive pixels prevents pairings that reflect associations
between spatially disparate pixels. From this, we learn that
associations between spatially disparate pixels are essential
for good BRIEF performance. Permuting the image effec-

Execution Times (s)

Distance Metric Conversion Evaluation

Euclidean 0 914
Convolutional Euclidean 3358.00 15414
Uniform Classical BRIEF 3.18 651
Gaussian Classical BRIEF 4.17 621
3x3 Neighbor BRIEF 3.76 655
Uniform Neighbor BRIEF 3.24 622
Gaussian Neighbor BRIEF ( 13 ) 3.25 637
Gaussian Neighbor BRIEF ( 17 ) 3.40 640

Table 2: Execution Times (s)

tively transforms the metric into Uniform Classical BRIEF,
with a highly similar error rate. This provides an effective
solution to the problem of negative spatial bias, although it
does not then further introduce any noticeable positive spa-
tial bias.

The Gaussian and Uniform Neighbor BRIEF variants also
lack spatial bias. This was more surprising in the case of the
Gaussian Neighbor BRIEF variants, where the intention was
to offset some of the problems with 3x3 Neighbor BRIEF by
encouraging pixels to be nearby but allowing more distant
pixels to play a role as well. These results demonstrate that
the pixel pairs simply need to be able to represent various
parts of the image, and that if they do so there will be suc-
cess. The precise locations of the pairs are not as important
as the idea that there is a broad sampling from among the
possibilities. 3x3 Neighbor BRIEF represents an unhelpful
constraint on those possibilities.

Figure 2 shows the time necessary to run these experi-
ments on a Dell Latitude 5289 Laptop with an Intel Core i5-
7300 CPU and 8 GB of RAM. The conversion times reflect
the time necessary to generate the target representation for
all of the training and testing images, whether it be a BRIEF
descriptor or a list of convolutional output images. The eval-
uation times show the time necessary to compare each of the
10,000 MNIST testing examples against each of the 60,000
MNIST training examples in order to perform a kNN clas-
sification. All of the BRIEF variants run considerably faster
than the Euclidean distance metric. This is attributable to
optimization opportunities made available by the bit vector
representation of the BRIEF descriptors.

It is not surprising that the Convolutional Euclidean is by
far the slowest. Due to its strong performance, we would
like to test it with two iterations of the convolutional ker-
nels (yielding 64 7x7 images), but we have not yet had the
computational resources available to complete this test.

Conclusions and Future Work
BRIEF descriptors are an appealing source of distance met-
rics due to their high potential for rapid calculation. In this
work, we showed that BRIEF-described metrics can perform
comparitively to a traditional L2 Euclidean metric. This is
all the more interesting because of the large amount of in-
tensity information they discard. Furthermore, although the



spatial relationships between pixels are crucial to the suc-
cess of these methods, in general they do not exhibit spatial
bias. In the cases where they do exhibit spatial bias, that bias
is a consequence of an uneven distribution for the selection
of the test pairs.

One important lesson from this work is that spatial bias
is not uniformly beneficial. A distance metric can become
overspecialized as a result of its spatial bias, limiting its per-
formance in comparison to approaches that leverage larger
samples of image pixels. The importance of this lesson
can be easily overstated, however, especially in light of the
strong performance of the Convolutional Euclidean met-
ric. That metric demonstrates the enormous potential that a
properly configured spatial bias can unlock.

As this work represents only a preliminary investigation,
there are multiple avenues we plan to explore from here.
First of all, we plan to investigate the utility of a second it-
eration of the convolutional process for the Convolutional
Euclidean metric. We are concerned about performance is-
sues but we have some concrete plans in place to ameliorate
them, including the potential exploitation of the GPU, as has
long been undertaken with Convolutional Neural Networks.

Second, the BRIEF descriptors were motivated in part by
the need to avoid problems with lighting variations that are
common in robotic sensing environments. Using inequalities
to represent only comparative intensity differences goes a
long way to neutralize this. Consequently, we plan to repeat
these experiments using image data sets derived from robots
in realistic environments. This could yield quite different re-
sults in comparison with the highly engineered MNIST data
set. In particular, it will give the BRIEF descriptors a chance
to shine in the type of environment for which they were in-
vented.

Third, we plan to combine these approaches to see what
kind of results we might yield. We would like to use the
BRIEF descriptors to generate binarized versions of the in-
put images to which the convolutional approach could be ap-
plied. Our hope is that the high performance potential of the
bit vectors when properly optimized could enable the convo-
lutional approach to become practical on the small embed-
ded devices frequently used for controlling robots. Consid-
erable additional thought and experimentation will be nec-
essary to achieve this, but we believe the present work lays
a solid foundation for doing so.

Fourth, kNN is widely seen as impractical to deploy due
to its huge memory requirements. However, a practical clas-
sifier can be built from an unsupervised clustering algorithm
which places a constant bound on the number of examples
to be stored. One could, for example, employ k-means++
to determine an ideal set of examples from an arbitrarily
large data set to employ as kNN inputs. The Kohonen Self-
Organizing Map (Kohonen and Honkela 2007) can likewise
be suitable for this purpose. We plan to evaluate this ap-
proach as well in our ongoing work.

Other kNN distance metrics also use spatial information,
such as the Tangent Distance (LeCun et al. 1998) and shape
context matching (Belongie, Malik, and Puzicha 2002). Our
future work will explore the relationship between the con-
cepts described in this paper and those metrics.

The full source code for these experiments is available
for download and experimentation: https://github.
com/gjf2a/flairs33.
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