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Abstract
An appealing alternative to tediously specifying robot
behaviors in response to particular image features is to
have the robot’s behavior be induced by human deci-
sions made when piloting the robot. This paper presents
one promising approach to creating this alternative. A
human pilots a camera-equipped robot, which builds
a representation of its target environment using Grow-
ing Neural Gas (GNG). The robot associates an action
with each GNG node based on what the human pilot
was doing while the node was active. When running
autonomously, the robot chooses the action associated
with the node that is the closest match to the current in-
put image. Preliminary results suggest that the approach
has potential, but that subsequent alteration of the ac-
tions induced for some of the GNG nodes is important
for acceptable performance.

Programming reactive behaviors (Brooks 1986) on a robot
equipped with basic sensors such as touch sensors and
sonars is reasonably straightforward and well-understood.
Despite considerable progress in computer vision tech-
niques, use of camera images to direct reactive behaviors
remains tricky. Considerable effort is often invested in com-
puter vision algorithms that are specialized for a particular
environment. (Horswill 1994)

The goal of this work is to use machine learning to enable
the reactive behavior to be induced by the actions of a hu-
man piloting the robot. The machine learning algorithm to
be employed needs to meet the following criteria:
• It should be an online algorithm that learns incrementally

as images are presented to it.
• The algorithm should operate quickly enough for the

robot to be able to drive at a respectable speed, both when
learning and when selecting actions based on learning.

• The learned representation should be comprehensible.
• The learned representation should be editable, to enable

the programmer to compensate for errors that arise during
the learning process.
The Growing Neural Gas (GNG) algorithm (Fritzke 1995)

meets our criteria. The algorithm partitions its training in-
puts into clusters based on a distance metric. Each cluster is
represented by a reference image. It adaptively determines
the number of clusters based on the input images it receives.

As the robot is driven through its environment by a hu-
man operator, it builds a GNG network. This network asso-
ciates an action with each node based on the choices made
by the human pilot when the node is active. This choice
can be subsequently changed if the programmer decides
that the learned action is not appropriate. When running au-
tonomously, the robot chooses the action associated with the
node whose reference image is the closest match to the cur-
rent input image. We found that this approach was effective
for developing an obstacle-avoiding behavior.

Figure 1: Portrait of the Robot

Learning the Environment
Unsupervised Learning
Unsupervised learning algorithms, such as k-means (Forgey
1965) (MacQueen 1967), the self-organizing map (SOM)
(Kohonen 2001), and Growing Neural Gas (GNG) (Fritzke
1995), operate by partitioning their training inputs into clus-
ters based on a distance metric. Each cluster is defined by
a representative example of a subset of the input space.
Each representative example is arithmetically derived (in an
algorithm-dependent manner) from the training inputs. Be-
cause the clusters are defined by representative examples



from the input space, it is possible to understand the learned
representations by examining them directly.

Both k-means and self-organizing maps require the num-
ber of clusters to be fixed in advance. Growing neural gas
adaptively determines the number of clusters based on its
inputs. In the interest of allowing the inputs to determine the
number of clusters, we selected GNG for this task.

Growing Neural Gas
Growing Neural Gas is an artificial neural network that is
trained using an unsupervised learning algorithm. The net-
work is an undirected weighted graph. In this implementa-
tion, both the network inputs and the network nodes are 2D
grayscale images. When an input is presented to the net-
work, the Euclidean distance between the input and each
node is calculated. The node with the shortest distance rela-
tive to the input becomes the active node.

Each edge connects two nodes that are active in response
to similar inputs. The edge weight reflects the frequency
with which the pair has been responsive in tandem; it is re-
set to zero whenever this occurs. Large weights denote weak
connections that are eventually purged. Nodes who lose all
their edges are purged as well.

Training In each iteration of training, a single input is pre-
sented to the network. The network is then adjusted as fol-
lows:

• Identify the nodes that are the closest and second-closest
matches to the input.

• Adjust edge weights.

• Update error and utility values.

• Create a new node.

• Purge edges and nodes.

In the training process, two nodes are identified: the node
with the shortest distance to the input, and the node with
the second-shortest distance. If an edge is present between
them, its weight is reset to zero; otherwise, a new edge is
created between them with a weight of zero. The weights of
all other edges adjoining the winning node are increased by
one.

The values of each image pixel pxy for the winning node
and each of its neighbors are updated as follows relative to
each input pixel qxy:

pxy = pxy + α(qxy − pxy)

The learning rate parameter α is significantly larger for
the winning node in comparison to the lower value used for
the neighboring nodes.

Error and Utility Each node maintains error and utility
values. The purpose of the error value is to identify nodes
that, while they are frequently the best matching node for
a variety of inputs, are still not very close matches. These
nodes, then, represent subsets of the input space that are
not adequately covered by the current set of nodes. The pur-
pose of the utility value is to identify nodes that are distinc-
tive relative to their neighbors. Nodes with high utility are

frequently much closer matches to many inputs than their
neighbors.

On each training iteration, these values are updated as fol-
lows:
• For the winning node:

– Increase the error for the winning node by the Eu-
clidean distance to the input.

– Subtract the distance to the winning node from the dis-
tance to the second-best node. Add this difference to
the utility.

• For each node n:
– Reduce the error and utility values using a decay con-

stant β (0 < β < 1) as follows:
∗ errorn = errorn − β × errorn
∗ utilityn = utilityn − β × utilityn

Creating New Nodes An integer parameter λ controls the
creation of new nodes. The frequency of node creation is
inversely proportional to lambda; low values imply frequent
introduction of new nodes. The purpose of adding new nodes
is to better represent subsets of the input space that are inad-
equately represented by the current node set.

Every λ iterations, a new node is created as follows:
• Find the node m with the largest error value in the net-

work.
• Find its neighbor n with the largest error value among all

of m’s neighbors.
• Create an image by averaging the corresponding pixel val-

ues of m and n.
• Create a new node p using:

– The averaged image
– The mean of the errors of m and n
– The maximum of the utility values of m and n

• Break the edge between m and n.
• Add an edge of weight zero betweenm and p, and another

between n and p.
• Divide the error and utility values for each of m and n by

two.

Purging Edges and Nodes On each iteration, every edge
whose weight exceeds a specified limit is purged. If any node
has all its edges purged, that node is purged as well.

In addition, for every node the utility ratio is calculated
(Fritzke 1997). The largest error of any node, emax, is de-
termined. The utility ratio for each node n with utility un

is emax

un
. The node with the single largest utility ratio is the

most useless node. If its ratio exceeds a parameter k, it is
purged.

Training and Programming
Our robot is equipped with a controller that allows a human
pilot to drive it around its environment. As the robot is driven
around, the first two images it acquires become the first two
nodes of Growing Neural Gas. Each subsequent image ac-
quired is used for one iteration of training the GNG network.



Training ends upon a signal from the pilot. The GNG net-
work is then saved for later use.

We modified the GNG learning algorithm as follows.
Whenever a node is the winning node, there are the follow-
ing three possibilities, resolved as follows:

1. When no action has yet been assigned to the node, the
current action is assigned.

2. When the action assigned to the node is identical to the
current action, nothing needs to change, as the current as-
signment is confirmed to be satisfactory.

3. When the action assigned to the node is different from the
current action, we have a “conflicting opinion” from the
human pilot that must be resolved. This conflict is embed-
ded in the GNG network itself, as a single node is cover-
ing inputs that trigger distinct responses from the pilot.
The conflict is resolved as follows:

(a) Create a new GNG node, setting its representation to be
the current input image.

(b) Create an edge of weight zero between the new node
and the winning node.

(c) Assign the current action to the newly created node.

A further modification to the algorithm is that any node to
which an action has been assigned is immune from purging.

When the controller executes, as each image is acquired it
is presented to the GNG network. (Nodes that never received
action assignments are not included.) The action specified
for the winning node is immediately executed.

Experiments
Configuration and Training
The experimental goal was to train the robot to be famil-
iar with a particular room, such that it could wander the
room without hitting anything. The robot is a Lego Mind-
storms NXT. To enable image processing, a Dell Inspiron
Mini Netbook equipped with a webcam was placed atop the
robot to control it via a USB cable. The configured robot is
shown in Figure 1. The human pilot chose one of the follow-
ing actions on each time step: FORWARD, SPIN_LEFT, and
SPIN_RIGHT.

The webcam images were acquired at a size of 640x480
pixels. Each image was averaged to produce a grayscale im-
age upon acquisition, with each pixel value ranging from 0
to 255. Each grayscale image was scaled down to 160x120
prior to being applied as an input to the GNG network. The
first two GNG nodes are the first two images acquired. This
configuration enabled images to be acquired and processed
and learning to occur at about 15-16 frames per second.
Given a robot velocity of 17 cm/s, it processes about one
frame per centimeter of travel. In the execution phase, the
processing rate dropped to about 7 frames per second, which
is still fast enough for respectable performance.

The GNG algorithm was parameterized as follows:

• Maximum edge age: 100

• Learning rate (winning node): 0.05

• Learning rate (neighboring nodes): 0.0006

• Maximum utility ratio (k): 4

• Iterations per node creation (λ): 200

• Error decay (β) per iteration: 0.0005

Most of the parameters were taken directly from the ex-
periments described by (Holmstrom 2002). Since the robot
processes one frame per centimeter of travel, the λ value of
200 was selected to ensure the creation of a new node after,
at most, two meters of travel.

The GNG network was trained by driving the robot
around the room for several minutes. The trained network
had 74 nodes by the completion of the run.

Action Selection
For 50 out of the 74 reference images (67.6%), the induced
action for the node reflected the intent of the pilot. Figure 2 is
a typical example of a node labeled for forward motion. The
floor tiles are blurred together, and the walls and cabinets are
found exclusively on the side of the image.

Figure 2: FORWARD Node

Figure 3 is a typical example of a node labeled for turning.
The cabinet is a dominant image feature. Rotating to the left
would orient the robot towards the clearly visible floorspace.

In several cases, two very similar images were assigned
different actions. In these cases, the partitioning of the input
space given by the algorithm did not match the partitioning
intended by the pilot. A typical example is given in Figure
4. The top image was assigned a SPIN LEFT action, while
the bottom image was assigned FORWARD. For some im-
ages that match the bottom reference image, there is enough
space to move forward; in other cases, there is not. Con-
sequently, the action for the bottom image was changed to
SPIN LEFT after the training phase was completed.

In a few cases, the reference image is so ambiguous that
it is difficult to give it a meaningful action assignment. In
Figure 5, which was assigned FORWARD, floor pixels are
dominant. However, there is a ghostly image of a wheeled
chair in the foreground as well. When assigned as a turn,
the robot often makes spurious turns in the midst of an open
area. When assigned as forward motion, the robot is very



Figure 3: SPIN LEFT Node

susceptible to collisions with wheeled chairs. This node and
some other problematic nodes were handled by manual re-
moval from the GNG.

A final problem that arose periodically was oscillation be-
tween nodes. The top image in Figure 6 has a SPIN LEFT
action; the bottom image is SPIN RIGHT. The robot was
stopped after it entered an oscillation between these nodes
that it could not escape.

Observed Robot Behavior
Figure 7 gives the duration and percentage of forward mo-
tion for each of ten runs. Runs A1-A3 were based on a con-
troller for which 21 out of 74 actions had been altered after
training. All runs except A3 ended by a movement-stopping
collision. As Run A3 was terminated as a result of the os-
cillation described in Figure 6, Runs B1 and B2 reflect the
changing of all turns to be right turns. Runs C1-C3 reflect a
similar controller after the removal of an ambiguous node.
That particular node had been implicated in the collisions
that ended the B runs. Runs D1 and D2 reflect the removal of
four additional nodes found to be problematic during the “C”
runs. The “Human” value denotes the percentage of forward
motion for a single run of a human piloting the robot, max-
imizing forward motion while avoiding obstacles. No dura-
tion was provided for the human, as no movement-stopping
collision occurred when manually piloting the robot.

The early runs show respectable performance but with
some clear flaws. Runs A1 and A3 ran for over a minute
without collisions, but with forward motion below 50%. Run
A2 managed excellent forward motion, but its early collision
reflects the fact that it moved forward a bit too often. The de-
cision to interpret all turning actions as right turns improved
forward motion but did not improve the durations. The re-
moval of ambiguous nodes significantly increased duration
at the cost of decreased forward motion.

The robot’s failure to reach human levels of forward mo-
tion can be attributed to two factors. First, the manual re-
placement of several FORWARD actions with turns intro-
duced an extra level of caution to the robot relative to the
actions of the pilot. This was especially noteworthy for the

Figure 4: Mismatched Actions

situations reflected in Figures 4 and 8. Second, the robot oc-
casionally performed spurious turns as the result of encoun-
tering ambiguous nodes.

Analysis
Characteristics of Nodes with Changed Actions
In analyzing the 24 nodes that had to be changed to reflect
human intent, we made the following observations:
• Out of the 74 nodes in the GNG, there were 23 nodes

with only one neighbor. We refer to these as “singletons”,
and they were all generated as a result of the conflict-
resolution strategy described earlier.

• Each of the four nodes with more than one singleton
neighbor had to have its action changed. Only one of these
nodes was left in the GNG for the final two “D” runs.

• Four of the 23 singleton nodes required an action change.
• Nine nodes had one singleton neighbor. Six of these re-

quired an action change.
• Out of the remaining ten nodes with changed actions, six

of them had a strong humanly-detectable visual resem-
blance to a neighboring node with a different action. We
were not able to devise an algorithmic test that corre-
sponded to this human-intuitive relationship.



Figure 5: Ambiguous Node

• The last four nodes were all neighbors with at least one
other node in need of an action change. In all cases, this
node was one of the four nodes that had multiple singleton
neighbors.

Human Performance
The robot did not always learn the lesson intended by the
human pilot. We saw one example of this earlier, in the dis-
cussion of Figure 4. A related issue can be seen in Figure 8.
When approaching the cabinet, the pilot turned briefly. Af-
ter the brief turn, there was enough space available to enable
some brief forward movement, prior to executing another
turn. This movement pattern was reflected in the structure of
the GNG. As a practical matter, there was not enough dis-
tance between the nodes to justify the forward motion, so
the middle node was changed to a turn.

Further Development
The results of this preliminary study are very promising.
About two-thirds of the learned actions were usable with-
out further editing. The success of the robot in performing
its task provides evidence that this formulation of GNG can
properly partition the input space to correspond reasonably
well to human intent. The decision to use a clustering algo-
rithm proved helpful, in that the learned behaviors were able
to be debugged and improved.

Our agenda to continue developing this technique is as
follows:

• Our initial results provide evidence that singleton nodes
and their neighbors are strong candidates for manual ac-
tion changes. We plan to modify the user interface to
present the singleton nodes and their neighbors for pro-
grammer examination at the start of the customization
process, in order to get the programmer started with nodes
that are most likely in need of modification.

• As ambiguous nodes are a significant problem, we are ex-
perimenting with a new feature that will allow the pro-
grammer to transform the reference image of a node to

Figure 6: Oscillating Actions; the top image is a left turn,
while the bottom image is a right turn

more closely resemble one of its neighbors. This may al-
low the programmer to smooth away ambiguities in the
reference image.

• Since there were some node relationships where the hu-
man intuition of image distance diverged from that given
by the Euclidean distance metric, we plan to investigate
alternatives to Euclidean distance that exploit higher-level
image features, provided that such alternatives can be
made to interact properly with the GNG learning algo-
rithm. One example of such an alternative is the bag-of-
visual-words representation employed in certain types of
appearance-only SLAM models (Cummins and Newman
2010).

• It is possible that additional ambiguities could be resolved
by using color information. In effect, the current scheme
uses only the Intensity element of the HSI image model.
Using the Hue and Saturation values has the potential to
improve the clustering.

• We plan to create an implementation for the Lego Mind-
storms EV3, using a webcam connected via its USB port.
We plan to distribute the EV3 implementation in an open
source manner. This will enable a wider community to
experiment with this technique.



Figure 7: Duration/Forward Motion

• We plan to teach a robotics course in Fall 2014 em-
ploying the EV3 implementation. This will help us as-
sess the degree to which the underlying behavior cre-
ation/improvement methodology is effective. It will also
provide the opportunity to experiment with this technique
in several different problem spaces.

Related Work
This project is an extension of our previous work applying
Growing Neural Gas for behavior creation (Ferrer 2014).
In our earlier variation, the human pilot’s actions were not
recorded. The human was then responsible for specifying
the action for every single GNG node. The goal of this work
was to reduce the effort necessary for action specification
by exploiting the knowledge of the pilot’s action selections.
Doing this required introducing the action-conflict resolu-
tion mechanism into the learning process.

Growing Neural Gas has been applied to robotic systems
for numerous purposes beyond that proposed in this paper,
including localization (Baldassarri et al. 2003) (Yan, We-
ber, and Wermter 2012), modeling the physical structure of
the environment (Kim, Cho, and Kim 2003), (Shamwell et
al. 2012), and control via gesture recognition (Yanik et al.
2012).

A representative example of a system that uses artificial
neural networks to simplify the programming of reactive be-
haviors is (Cox and Best 2004). In their system, the pro-
grammer specifies motor settings for various combinations
of sensor values that a simulated robot encounters. A multi-
layer perceptron is employed to generalize the motor set-
tings to sensor combinations that had not been previously
encountered. The simulated sensors are three infrared sen-
sors and two bump sensors. It is not at all clear how this ap-
proach would scale to the much greater complexity of visual
input. Our work, by exploiting the inherent intelligibility of
the reference images of the GNG clusters, provides the pro-
grammer with meaningful abstractions of the visual input
for which actions can then be coherently specified.

(Touzet 2006) employs self-organizing maps (Kohonen
2001) to build models of a physical robot’s environment and

the effect of performing actions in certain states. The de-
sired behavior is then specified in terms of targeted sensor
values. For the range sensors they employed, specific win-
dows of target values are specified in order to induce the
target behavior. When using computer vision as a sensor,
creating such windows of target values is impractical. The
GNG cluster reference images provide a usable alternative.

(Adam Coates and Ng 2008) describe a different approach
to developing a robot controller based on human demon-
stration. They employ a human expert to pilot a remote-
controlled helicopter multiple times through a target trajec-
tory. The helicopter then autonomously traverses that tar-
get trajectory. Our work addresses a different problem. The
work of (Adam Coates and Ng 2008) shows how to learn
a complex trajectory given relatively simple sensor inputs.
Our work shows how to learn a relatively simple trajectory
given complex sensor inputs. The differences in the under-
lying data structures employed reflects this.

(Leonetti et al. 2012) describe a method for automated
generation of finite state machines as robot controllers. As
our use of machine learning is aimed at making complex
sensor data accessible, and their use of learning is to create
controllers given a formal model of a problem domain, there
is possible synergy between them. Our work could help re-
duce a visual input stream into a finite set of states upon
which the controller-learning architecture could operate.

Conclusion
We have shown that Growing Neural Gas can be employed
for inducing robot behavior modeled on that of a human pi-
lot. As an online learning algorithm with a humanly under-
standable representation, a human can further alter the be-
havior of the learned controller when its behavior in practice
is not satisfactory. It runs sufficiently fast for real-time pro-
cessing, both when learning and when selecting actions.

Significant work remains to be done to improve upon the
results of this preliminary study. The research agenda from
here includes further modifications to the GNG learning al-
gorithm as well as experimentation with a larger number of
problems and a wider variety of domains.
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