Question 1 (K\&T 8.4). Suppose you're consulting for a group that manages a high-performance real-time system in which asynchronous processes make use of shared resources. Thus the system has a set of n processes and a set of m resources. At any given point in time, each process specifies a set of resources that it requests to use. Each resource might be requested by many processes at once; but it can only be used by a single process at a time. Your job is to allocate resources to processes that request them. If a process is allocated all the resources it requests, then it is active; otherwise it is blocked. You want to perform the allocation so that as many processes as possible are active. Thus we phrase the Resource Reservation problem as follows: Given a set of processes and resources, the set of requested resources for each process, and a number k, is it possible to allocate resources to processes so that at least k processes will be active?

Consider the following list of problems. For each problem either give a polynomial-time algorithm or prove that the problem is NP-complete.

- The general Resource Reservation problem defined above.
- The special case of the problem when $k=2$.
- The special case of the problem when there are two types of resourcessay, people and equipment-and each process requires at most one resource of each type. (In other words, each process requires at most one specific person and one specific piece of equipment.)
- The special case of the problem when each resource is requested by at most two processes.

Question 2 (K\&T 8.5). Consider a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a collection $B_{1}, B_{2}, \ldots, B_{m}$ of subsets of A (i.e., $B_{i} \subseteq A$ for each i).

We say that a set $H \subseteq A$ is a hitting set for the collection $B_{1}, B_{2}, \ldots, B_{m}$ if H contains at least one element from each B_{i}-that is, if $H \cap B_{i}$ is not empty for each i (so H "hits" all the sets B_{i}).

We now define the Hitting Set problem as follows. We are given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, a collection $B_{1}, B_{2}, \ldots, B_{m}$ of subsets of A, and a number k. We are asked: Is there a hitting set $H \subseteq A$ for $B_{1}, B_{2}, \ldots, B_{m}$ whose size is at most k ?

Prove that Hitting Set is NP-complete.
Question 3 (K\&T 8.6). Consider an instance of the Satisfiability problem, specified by clauses C_{1}, \ldots, C_{k} over a set of Boolean variables x_{1}, \ldots, x_{n}. We say that the instance is monotone if each term in each clause consists of a nonnegated variable; that is, each term is equal to x_{i}, for some i, rather than $\overline{x_{i}}$. Monotone instances of Satisfiability are very easy to solve: they are always satisfiable, by setting each variable equal to 1 .

For example, suppose we have the three clauses

$$
\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee x_{3}\right),\left(x_{2} \vee x_{3}\right)
$$

This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the clauses. But we can observe that this is not the only satisfying assignment: we could also have set x_{1} and x_{2} to 1 , and x_{3} to 0 . Indeed, for any monotone instance, it is natural to ask how few variables we must set to 1 in order to satisfy it.

Given a monotone instance of SATISFIABility, together with a number k, the Monotone Satisfiability with Few True Variables problem asks: is there a satisfying assignment for the instance in which at most k variables are set to 1? Prove that this problem is NP-complete.

