
CSCI 280: Algorithms – Spring 2016 Brent Yorgey

We have spent some time exploring some of the theoretical aspects of NP-
completeness, and a sampling of NP-complete problems. On this assignment,
you will explore the more practical side of NP-completeness: what can you
do when you really, actually need to solve an NP-complete problem?

What to turn in

You should turn in two files:

• certificate.txt, described in the section “Coloring your graph”
below.

• Whatever program(s) you used to help you generate certificate.txt.

Background: graph coloring

Suppose we have an undirected graph G = (V, E). Given some set of colors
C, a coloring of G is a function χ : V → C, that is, an assignment of a color
to each vertex. A valid coloring is one for which no two adjacent vertices
have the same color; that is, χ(u) 6= χ(v) for every (u, v) ∈ E.

For example, Figure 1 shows a valid coloring of a graph with 7 vertices.
You can check that no two adjacent vertices have the same color.

Figure 1: A valid 4-coloring of a graph with
7 vertices

A k-coloring is a valid coloring of a graph which uses at most k colors.
The example shown in Figure 1 is a 4-coloring (and also a 5-coloring, and
a 26-coloring, and so on). A graph G is called k-colorable if it has a valid
k-coloring. Finally, the chromatic number of a graph G is the smallest k for
which G is k-colorable. The graph shown in Figure 1 actually has a chro-
matic number of 3—can you find a valid 3-coloring?

Given a graph G and a number k, the GRAPH COLORING problem
asks: is the graph k-colorable? There are kn possible colorings to check,
so a brute force algorithm is definitely not going to work. In fact, this
problem is NP-complete for k ≥ 3, which can be proved by reduction For k = 2, however, it can be solved

efficiently—can you figure out how?from 3-SAT. The proof has a similar flavor to the reduction 3-SAT ≤P

INDEPENDENT SET we did in class: given a 3-SAT instance, one
builds a particular graph out of “gadgets” which encodes the constraints given
by the 3-SAT clauses, in such a way that a 3-coloring of the graph corre-
sponds to a valid truth assignment. For details of the proof, see, for example,
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/

sat.pdf.

Defining your graph

For this assignment you will work with your own personal graph. Here is
how to determine your graph:

Homework 11 1 Due: 4:00pm, Friday, April 29

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/sat.pdf


CSCI 280: Algorithms – Spring 2016 Brent Yorgey

1. Pick a specific string to represent your name. For example, mine might be
"Brent Yorgey" or "Brent A. Yorgey" or "Dr. Yorgey"—
it does not matter what string you pick, as long as you specify it exactly.

2. Find the MD5 hash of your string, which should yield a 16-byte hash
value. For example, in Python, given your chosen string stored in a vari-
able name, one can write

import md5

hash_bytes = md5.new(name).digest()

to compute the MD5 hash. In Java, one can write something like

import java.security.*;

byte[] bytesOfMessage = name.getBytes("UTF-8");

MessageDigest md = MessageDigest.getInstance("MD5");

byte[] hash_bytes = md.digest(bytesOfMessage);

3. The resulting 16-byte hash can of course be thought of as a sequence
of 128 bits. We can use a sequence of bits to encode an undirected, un-
weighted graph as follows. Each bit records the presence or absence of a
single edge: a 1 bit means the edge is present, and 0 means it is absent. We
assume that the vertices of the graph are numbered from 0 to n− 1.

• The index-0 bit, that is, the least significant or last bit, corresponds to
the edge (1, 0).

• The bit at index 1, i.e. the second-to-last bit, corresponds to (2, 0), and
the bit at index 2 corresponds to (2, 1).

• The next three bits correspond to (3, 0), (3, 1), and (3, 2).

The general pattern is that the first 1 + 2 + 3 + · · · + k = k(k + 1)/2
bits (counting from the end of the bit string) correspond to all the possible
edges involving vertices numbered 0 through k; the next k + 1 bits after
that correspond to edges from vertex k + 1 to all the smaller vertices,
starting with vertex 0.

For example, we need (4 · 5)/2 = 10 bits to encode a graph with 5
vertices; the graph shown in Figure 2 is encoded by 0010001101. The
last bit (a 1) indicates that there is an edge from vertex 1 to vertex 0; the
second-to-last bit (a 0) indicates that there is no edge from 2 to 0; and so
on.

4

3

2

1

0
Figure 2: The graph encoded by
0010001101.

In general, to determine whether vertices i and j are connected, first sort
them so i > j, and then look at the bit with index i(i− 1)/2 + j.

Homework 11 2 Due: 4:00pm, Friday, April 29



CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Since 16(16− 1)/2 = 120 < 128 (but 17(17− 1)/2 = 136 > 128),
your 128-bit hash value defines a particular undirected graph with 16
nodes. The final 8 bits of your hash value are not used.

Note that there is an annoying mismatch between the way we are number-
ing the bits (starting from the right) and the way the individual bytes in an
array or string are numbered (starting from the left). To make things easier
on yourself, after computing the MD5 hash you may want to reverse the
list/array of bytes, so that the last byte will be at index 0, the second-to-last
at index 1, and so on. Then bit j will be the (j mod 8)th bit in the bj/8cth
byte. Alternately, you can just turn your list of bytes into a list of bits, and
then reverse the entire list.

As an example, my graph (generated from the string Brent Yorgey) is
shown in Figure 3.

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 3: The graph generated by “Brent
Yorgey”, corresponding to the hash ad 02 2f
e3 f6 88 00 b6 f1 db 37 a8 f8 e1 4b 10

For example, the final 10 in the hexadecimal representation of the hash cor-
responds to the bits 00010000, which correspond to edges in the graph as
follows:

0 0 0 1 0 0 0 0
(4,1) (4,0) (3,2) (3,1) (3,0) (2,1) (2,0) (1,0)

As you can see, there is indeed an edge between vertices 1 and 3 in the
graph, and no edges between any of the other indicated pairs of vertices. To
make sure you understand how a hash value determines a graph, you can
spot-check other edges for yourself: pick a pair of vertices and check that the
corresponding bit in the hash value is what you expect.

Homework 11 3 Due: 4:00pm, Friday, April 29



CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Coloring your graph

The question you now need to answer is: what is the chromatic number of
your graph? Most randomly chosen graphs with 16 vertices have chromatic
number 5, so that wouldn’t be a bad guess, but of course it could in theory
be as small as 1 (if your graph has no edges) or as large as 16 (if your graph
includes every possible edge). Empirically, it seems likely that at least one
of you will have a graph with chromatic number 6. In any case, guessing
the right chromatic number would not be enough anyway: in addition to
determining the chromatic number k, you should construct an actual valid
k-coloring, which can serve as an efficiently-checkable certificate that your
graph is indeed k-colorable. On the other hand, coming up with an

efficiently-checkable certificate proving
that your graph is not (k− 1)-colorable is
quite a different story, and is likely to be
impossible, though no one knows for sure.

Ultimately, you should turn in a file named certificate.txt contain-
ing three lines:

1. The first line should contain the exact string you chose to generate your
graph.

2. The second line should contain a single number, the chromatic number k
of your graph.

3. The third line should contain 16 characters specifying a valid coloring for
the vertices 0 . . . 15 in your graph. It does not matter which characters you
use, but there should be exactly k different characters, one standing for
each color.

For example, my certificate.txt looks like this:

Brent Yorgey

5

eeedcddbabaccebd

You can check that assigning the same color to the first three vertices, a
different color to the next vertex, and so on, is indeed a valid 5-coloring of
the graph generated by the string Brent Yorgey, as shown in Figure 4.

At this point you might wonder how you are supposed to come up with
a coloring for your graph. Even with the relatively small value n = 16,
a brute force algorithm might have to check, for example, up to 516 =

152587890625 potential 5-colorings. One might try a greedy strategy: for
each vertex from 0 . . . n − 1, pick the smallest color that is unused by any
of the previous vertices it is connected to. But as you can see if you try it,
this does not really work. For example, this greedy algorithm on my graph
produces the (non-optimal) 6-coloring shown in Figure 5. Notice how vertex
14 is given a sixth color (brown), since by the time it is reached, it has at least
one neighbor with each of 5 different colors.

In fact, we will use a tried-and-true technique for attacking computation-
ally hard problems like this: reduce the problem to SAT, and hand it off to

Homework 11 4 Due: 4:00pm, Friday, April 29



CSCI 280: Algorithms – Spring 2016 Brent Yorgey

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 4: A 5-coloring of the “Brent
Yorgey” graph

15

14

1312

11

10

9

8

7

6

5 4

3

2

1

0

Figure 5: A non-optimal greedy coloring of
the “Brent Yorgey” graph

Homework 11 5 Due: 4:00pm, Friday, April 29



CSCI 280: Algorithms – Spring 2016 Brent Yorgey

a SAT solver, a program specifically designed to solve SAT instances. Even
though all such programs (that we know of) take exponential time in the
worst case, they are astonishingly efficient in the general case.

Using the Yices SAT solver

For this assignment, you will use a SAT solver called Yices, available at
http://yices.csl.sri.com/. There are many solvers available; I
chose Yices simply because it is freely available on multiple platforms and
easy to get started with. (If you want to try a different one for some reason,
you are welcome to.)

Download the latest version of Yices (2.4.2 as of this writing) for your
OS and unzip it somewhere. In the bin/ folder you should find several
executables, one of which is yices-sat. This is the SAT solver that comes
with Yices. (In fact, Yices is not just a SAT solver, but actually something
called an “SMT solver”, which is much more general and powerful than a
SAT solver; ask me if you are interested in the details.)

The format expected by yices-sat is described at http://people.
sc.fsu.edu/~jburkardt/data/cnf/cnf.html. The short version
is that the first line should contain

p cnf n k

where the text p cnf occurs literally, and n and k are replaced by the
number of variables and the number of clauses, respectively. For example,
p cnf 7 20 would denote a SAT instance with 7 variables and 20 clauses.

The next k lines should describe the clauses. Each line consists of a list of
integers, separated by spaces, with an extra 0 at the end. The integers indicate
variables, numbered 1 . . . n, with an integer i corresponding to xi and −i
corresponding to xi. For example, to encode the clause (x1 ∨ x3 ∨ x7 ∨ x4)

one would write

1 -3 7 -4 0

As a complete example, suppose we have 4 variables x1 . . . x4 and the clauses

(x1 ∨ x4), (x2 ∨ x3 ∨ x4), (x1 ∨ x3 ∨ x4).

We would encode this as the file

p cnf 4 3

1 4 0

2 -3 -4 0

-1 3 4 0

Suppose this was saved in a file called example.cnf. Then we can give it
as input to yices-sat just by giving the file name as an argument at the
command line:

Homework 11 6 Due: 4:00pm, Friday, April 29

http://yices.csl.sri.com/
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html


CSCI 280: Algorithms – Spring 2016 Brent Yorgey

$ yices-sat example.cnf

sat

(Note that $ indicates the command prompt, and should not be typed.) Yices
returns immediately and tells us the clauses are satisfiable. To see the actual
assignment it came up with, pass it the -m option:

$ yices-sat -m example.cnf

sat

-1 -2 -3 4 0

It tells us that a satisfying assignment consists of setting x1, x2, and x3 to F,
and x4 to T.

On the other hand, given the input file

p cnf 2 4

1 2 0

1 -2 0

-1 2 0

-1 -2 0

yices-sat prints unsat, telling us that the set of clauses is not satisfiable
(as you can easily verify).

Reducing to SAT

You will need to write a program that reduces k-colorability of your graph
to a SAT instance, and outputs an appropriate input file for yices-sat.

Hint:
You can then try each value of k = 1, 2, . . . until you find the smallest one
for which the corresponding instance is satisfiable. (In general one could of
course use binary search, but for such small values of k it is hardly worth the
effort.) Then use the satisfying assignment generated by Yices to construct a
valid k-coloring of your graph.

Homework 11 7 Due: 4:00pm, Friday, April 29

Use n*k Boolean variables, one for each combination of vertex and color.

	What to turn in
	Background: graph coloring
	Defining your graph
	Coloring your graph
	Using the Yices SAT solver
	Reducing to SAT

