
CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Question 1. Suppose you are choosing between the following three algo-
rithms:

1. Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two sub-
problems of size n− 1 and then combining the solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine sub-
problems of size n/3, recursively solving each subproblem, and then
combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in asymptotic nota-
tion) and which would you choose?

Question 2 (K&T 5.1). You are interested in analyzing some hard-to-obtain
data from two separate databases. Each database contains n numerical
values—so there are 2n values total—and you may assume that no two values
are the same. You’d like to determine the median of this set of 2n values,
which we define to be the nth smallest value.

However, the only way you can access these values is through queries to
the databases. In a single query, you can specify a value k to one of the two
databases, and the chosen database will return the kth smallest value that it
contains. Since queries are expensive, you would like to compute the median
using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n)
queries.

Question 3. Recall that the Fibonacci numbers Fn are defined recursively by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2,

with the first few given by 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . You may assume
the following facts:

• Fn is O(φn) (where φ is the golden ratio, (1 +
√

5)/2).

• In addition to their definition, Fibonacci numbers satisfy the following
recurrences:

F2n+1 = F2
n + F2

n+1

F2n = 2FnFn+1 − F2
n

Homework 6 1 Due: 4:00pm, Friday, March 4



CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Design an efficient algorithm to compute Fn, and analyze its running time. Be
careful to include the time needed for any multiplications and additions; since
the algorithm may need to deal with very large numbers, you may not assume
that arithmetic operations take O(1) time.

3Question 4. An array A[1 . . . n] is said to have a majority element if more
than half of its entries are the same. Given an array, the task is to design an
efficient algorithm to tell whether the array has a majority element, and, if so,
to find that element. The elements of the array are not necessarily from some
ordered domain like the integers, and so there can be no comparisons of the
form A[i] > A[j]. You should think of the array elements as, say, JPEG files.
However, you can answer questions of the form: A[i] = A[j] in O(1) time.

(a) Show how to solve this problem in O(n log n) time. Make sure to prove

4a
that your algorithm is correct (via induction) and give a recurrence relation
for the running time of your algorithm.

(b) Can you give a linear-time algorithm?

4b

Extra Credit

This question adapted from the Design and Analysis of Algorithms course at
the University of Konstanz by Dr. Ulrik Brandes and Dr. Sabine Cornelsen.

Question 5 (Least Common Ancestor). Let T = (V, E) be an oriented tree
with root r ∈ V and let P ⊆ {{u, v} | u, v ∈ V} be a set of unordered pairs
of vertices. For each v ∈ V let Πv = {r, ..., v} ⊆ V denote the sequence of
vertices along the path from r to v and let d(v) = |Πv| − 1 denote the depth
of v ∈ T. The least common ancestor of pair {u, v} ∈ P is defined as w ∈ V
with w ∈ Πv ∩Πu and d(w) > d(w) for all w ∈ Πv ∩Πu.

Algorithm LCA(r) traverses T to determine the least common ancestors of
all pairs {u, v} ∈ P . At the beginning, all vertices are unmarked.

Algorithm 1: LCA(u)

1 Makeset (u)
2 ancestor[Find(u)]←− u
3 foreach child v of u in T do
4 LCA(v)
5 Union(Find(u),Find(v))
6 ancestor[Find(u)]←− u
7 end
8 mark u
9 foreach v with {u, v} ∈ P do

10 if v is marked then
11 print “LCA(” + u + “,” + v + “) is” + ancestor[Find(v)]
12 end
13 end

Homework 6 2 Due: 4:00pm, Friday, March 4

First, determine the number of bits needed to represent F_n.
Split the array into two equal-size subarrays. Would it help to know their majority elements?
Pair up A's elements.  For each pair, if the two elements are different, discard both of them; if they are the same, keep just one. Show that afterwards, there are at most n/2 elements left, and that they have a majority element if A does.


CSCI 280: Algorithms – Spring 2016 Brent Yorgey

(a) Show that, when Line 8 in LCA(u) is executed, the set FIND(u) contains
all vertices of the subtree Tu ⊆ T with root u.

5a(b) Show that the number of sets in the Union-Find data structure at the time
of a call to LCA(v) equals d(v).

5b

(c) Prove that LCA(r) determines the least common ancestors of all {u, v} ∈
P correctly.

5c

(d) Analyze the running time of LCA(r).

Homework 6 3 Due: 4:00pm, Friday, March 4

Do an induction on the height h(u) of u. (h(u) = 0 if u is a leaf.)
The recursive calls of LCA specify a traversal order of T which induces an order on V. Do an induction on the position of v in this order.
Differentiate two cases: when one of u, v is in the other's subtree; and when neither is in the other's subtree.

