
CSCI 280: Algorithms – Spring 2016 Brent Yorgey

You are expecting to receive a Very Important Message over a network,
encoded as a sequence of bits. The message will only be sent once. Receiving
the message is so important that you decide to redundantly have two comput-
ers both listening for the message, just in case one of them doesn’t work.

This turns out to be an excellent idea; however, you only have the idea
at the last minute. When the message starts to arrive, computer A is listen-
ing, but you have not quite finished setting up computer B! So computer B
does not record some beginning portion of the message. You do finally get
computer B set up and it starts recording the message somewhere in the mid-
dle. And it’s a good thing you do, because a few seconds later, computer A
crashes! Thankfully computer B continues to work, and records the rest of
the message.

Here, then, is the situation: both computers recorded only part of the mes-
sage. Computer A recorded from the beginning of the message to somewhere
in the middle, and computer B recorded from a different point in the middle
to the end. The bits recorded by computer A and computer B overlap, but
you have no way to know how many bits are in the overlapping portion, since
you do not know how long the message is supposed to be, and network trans-
mission speeds are variable enough that you have no way to know how many
bits were transmitted between the time when B started recording and the time
when A crashed.

To make things worse, there can be occasional transmission errors, where
individual bits are flipped. So even during the portion of the message that
both computers were recording, there can be positions where computer A
recorded a 0 but computer B recorded a 1 (for example, A might have cor-
rectly recorded the intended bit, but a glitch caused computer B to record the
incorrect bit). The message uses an error-correcting code, so you will be able
to fix these incorrect bits—but not until you have reconstructed the whole
message!

You need to find the correct alignment, defined as the index of the bit
where computer B started recording. So, for example, if the first bit recorded
by computer B was the 973rd bit in the message, the correct alignment would
be 972.

With no way to deduce the correct alignment, you decide to simply try
all possible alignments and find the one that gives the best match between
the overlapping portions of A’s bits and B’s bits. Because of the occasional
errors, the overlap will probably never be perfect, but the hope is that many
more bits will correspond with the correct alignment than with any incorrect
alignment.1 1 Of course it is easy to imagine scenarios

where this does not work—for example,
if the middle of the message contains a
very long sequence like 101010101010 . . .
then many different alignments could all
match, but given that no one would bother to
send a message with so much redundancy,
it is reasonable to assume that the correct
alignment will correspond to the best match.

Formally, let A = a0a1a2 . . . an−1 be the sequence of bits recorded by
computer A, and let B = b0b1b2 . . . bn−1 be those recorded by computer B.
(For simplicity we assume that A and B have the same length, but it does not
really matter.) An alignment of i means that ai is matched with b0, ai+1 with
b1, . . . and in general ai+k is matched with bk. We define the fit of a given

Homework 6b 1 Due: 4:00pm, Friday, March 11

CSCI 280: Algorithms – Spring 2016 Brent Yorgey

alignment as the average number of mismatches per bit in the overlapping
portion, that is,

fit(i) =
1

n− i

n−1−i

∑
k=0
|ai+k − bk|.

For example, suppose A and B have 40 bits each, and are given by

A = 1100101101100111100010011000001011111100

B = 0001000100001101101110011101010001001111

With an alignment of, say, 35, A and B overlap by 5 bits, namely, the 11100
at the end of A overlaps with the 00010 at the beginning of B. Four out of
five of these bits do not match, giving a fit score of 4/5 = 0.8. Note that
the fit score will always be between 0 and 1. A fit score of 0 means that the
sequences match perfectly; a fit score of 1 means that the overlapping por-
tions are exactly inverted from each other, with the first having a 0 whenever
the second has a 1, and vice versa. On average, we would expect that two
randomly chosen sequences of bits will have a fit score of 0.5 relative to each
other.

The absolute best fit between A and B is at alignments 38 and 39: namely,
those alignments give a fit of zero, since the two 0 bits at the end of A match
perfectly with the two 0 bits at the beginning of B. However, there is a 50%
chance that the sequences will align perfectly with an overlap of one, and this
is unlikely to actually be the correct alignment. So we ignore alignments near
the end like this (specifically, let’s say that we will ignore any alignment with
10 or fewer bits of overlap). Making a graph with alignment on the x-axis
and fit on the y-axis, an alignment of 17 clearly jumps out as giving the best
(lowest) fit value:

17 403020100
0

1

Writing A and B underneath each other using this alignment, we can see
that they do indeed appear to match very well, with only a few differences;
the average number of disagreements per bit is very low:

1100101101100111100010011000001011111100
0001000100001101101110011101010001001111

On the other hand, if we pick another alignment (say, 12):

1100101101100111100010011000001011111100
0001000100001101101110011101010001001111

we can see that A and B do not match very well; the average number of
disagreements per bit is relatively high.

Homework 6b 2 Due: 4:00pm, Friday, March 11

CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Question 1. Before even thinking about designing an algorithm, you decide
to do some quick back-of-the-envelope calculations. You note the following
facts:

• Each part of the message is about 1GB in length, that is, each part contains
n ≈ 233 bits.

• Your computer can perform about 1 billion operations per second.

You then imagine using algorithms with various running times and calculate
how long they would take to run.

(a) If your algorithm required exactly n2 operations, approximately how
long will it take to run? Express your answer in appropriate, human-
comprehensible units (e.g. say “10 hours”, not “36000 seconds”).

(b) If your algorithm required exactly n log2 n operations, approximately how
long will it take to run?

Question 2. Design and analyze an efficient algorithm which, given two
length-n sequences of bits, finds the alignment with the best fit value.

Homework 6b 3 Due: 4:00pm, Friday, March 11

