
CSCI 280: Algorithms – Spring 2016 Brent Yorgey

A question for which you’d never guess the correct answer

Question 1 (Micah’s cafeteria problem). The Yankees have made it to the
World Series against your favorite team, the Houston Astros. The World
Series is a best of 7 series, which means that the first team to win 4 total
games is declared the winner. Thus, the series can be as short as 4 games or
as long as 7 games. As an amateur gambler, you plan to place bets on each
of the games in the series. Unfortunately, your gambling exploits from the
Academy Awards have left you with only $100 in your pocket. While your Note: There is no probability involved in

this question—your strategy is based purely
on the wins and loses of the two teams in the
series.

love for the Astros is unbounded, so too is your enmity for the Yankees. This
acrimony has led you to the following decision: If the Yankees win, you want
to lose all $100, but if the Astros win, you want to double your money. What
should your strategy be? In particular, how much money should you bet on
the first game?

(a) Start by letting p(i, j) be your current winnings or losings (that is, the
amount gained or lost relative to your starting $100) when the Astros have
i wins and the Yankees have j wins. For example, p(4, 1) = 100, because
if the Astros win, you should win $100, while p(1, 4) = −100 since if the
Yankees win you should lose $100. In general, what are the base cases for
p?

(b) Write a recursive definition for p(i, j).

(c) Now, p(0, 0) should be 0, so p(1, 0) should reveal your bet. What is it?

Greedy Failure

Question 2. Recall the matrix-chain order problem which asks, given n
matrices A1, . . . , An with corresponding dimensions p0, p1, . . . , pn, in what
order should we perform the matrix multiplications so as to minimize the
number of scalar multiplications? It is tempting to consider greedy strate-
gies to solve this problem. For example, consider the following two greedy
algorithms:

Algorithm 1

Given an interval of matrices A1, . . . , An, choose the pair of matrices Ai, Ai+1
requiring the fewest scalar multiplications. That is, choose i such that pi−1 pi pi+1
is minimal. Multiplying these two matrices leaves us with n− 1 matrices; re-
cursively apply the strategy on the remaining matrices.

Algorithm 2

Given an interval of matrices Ai, . . . , Aj, choose the split point t such that
pi−1 pt pj is minimal. Use this strategy recursively on the intervals Ai, . . . , At
and At+1, . . . , Aj. The top-level recursion begins with the interval A1, . . . , An.

For each algorithm, give an example where applying the strategy to the exam-
ple yields a sub-optimal solution.

Homework 7 1 Due: 4:00pm, Friday, March 18

CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Algorithms in the Wild

Question 3 (Derived from K&T 6.6). In a word processor, the goal of loose
justification is to take text with a ragged right margin, like this,

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,

I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is “as even as possible”, like this:

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

particular to interest me on shore, I

thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to write
a justifier for text, we need to figure out what it means for the right mar-
gins to be “even”. Suppose our text consists of a sequence of words, W =

{w1, w2, . . . , wn} where wi consists of ci characters. We have a maximum
line length of L. We will assume we have a fixed-width font, so we just need
to make sure that the number of characters on each line is no more than L.

A formatting of W consists of a partition of the words in W into lines. In
the words assigned to a single line, there should be a space after each word
except the last; and so if wj, wj+1, . . . , wk are assigned to one line, then we
should have

ck +
k−1

∑
i=j

(ci + 1) ≤ L.

We will call an assignment of words to a line valid if it satisfies this inequal-
ity. The difference between the left-hand side and the right-hand side will be
called the slack of the line—that is, the number of spaces remaining at the
right margin. For example, suppose L = 10. Then

Call me Ishmael.

not valid, since it has length (4 + 1) + (2 + 1) + 8 which is greater than 10.
On the other hand,

Call me

is valid, and has a slack of 3, since it has length only 7, leaving 3 remaining
spaces at the end.

Homework 7 2 Due: 4:00pm, Friday, March 18

CSCI 280: Algorithms – Spring 2016 Brent Yorgey

We will say that a formatting is optimal when the sum of the squares of
the slacks of all lines (including the last line) is minimized.

(a) Describe a greedy algorithm to find a formatting of a list of words, and
give an example where your greedy algorithm does not produce an optimal
solution.

(b) Using dynamic programming, design and analyze an efficient algorithm to

3

Medium hint

3

Big hint

find an optimal formatting of a set of words W into valid lines for a given
line length L.

(c) Why did we use the sum of the squares instead of just, say, the sum? That
is, what sort of bias does this optimization function create?

(d) Write a program that implements your algorithm. Your program should
take two command-line arguments: (1) an integer representing the max-
imum line length; and (2) a file name. It should then output a justified
version of the file to stdout using the algorithm above.

For example, suppose lorem.txt contains the text:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque

rhoncus interdum odio, mattis finibus eros imperdiet non. Praesent egestas lectus.

Then running your program with the arguments 25 and lorem.txt
should print

Lorem ipsum dolor sit

amet, consectetur

adipiscing elit. Quisque

rhoncus interdum

odio, mattis finibus

eros imperdiet non.

Praesent egestas lectus.

which is an optimal formatting of the text into lines of length at most 25.
If you want to use Python, I have prepared a skeleton program from

which you can start, available on the course website. However, you
may use any programming language you wish. Also available is a file Ask me if you want some ideas on how

to write it in Haskell, which has a really
slick way to express dynamic programming
algorithms using lazy, recursively defined
arrays.

neruda.tgz which contains a Pablo Neruda poem together with two
outputs: neruda.50.out and neruda.30.out are the results of
running my solution on neruda using a line length of 50 and 30, respec-
tively. Note that in both cases, there are multiple correct solutions with the
same minimum score. Your program may not produce exactly the same
output as mine, but you should ensure that it produces a solution with the
same score.

You should submit your program on Moodle. If necessary, you should
also submit a file README.txt with instructions explaining how to
compile and run your program.

Homework 7 3 Due: 4:00pm, Friday, March 18

Let score[i] denote the best score achievable using only the first i words.
To compute score[k], focus on the last line. First try putting just one word on the last line, then try two words, then three, ... and pick the best resulting score.

CSCI 280: Algorithms – Spring 2016 Brent Yorgey

Extra Credit: Generalized Huffman Coding with Integer Values

Question 4. Suppose you are given an alphabet Σ = {a1, . . . , at} of t
symbols. A word w = u1u2 · · · ul is a finite sequence of (possibly repeated)
symbols from Σ. A code is a set of words C = {w1, w1, . . . , wn}. A code is
prefix-free if no word in C is a prefix of another word in C. Any code of this
form can be expressed as a tree T where a root-to-leaf path in T yields a word
in C. If the cost of character ai is ci then the cost of a word w = aj1 aj2 ajm is

c(w) =
m

∑
i=1

cji .

If codeword wi has associated probability pi, then the cost of a code C is

∑
wi∈C

c(wi)pi.

In the standard Huffman coding problem you are given a discrete probability
distribution with n values P = p1, . . . , pn and asked to find a minimum
cost prefix-free code for P over the alphabet Σ = {0, 1} where c(0) =

c(1) = 1. In this case the algorithm that greedily builds a binary tree by
always combining the pair of values with lowest probability yields an optimal
solution. However, the greedy algorithm does not work when the costs of the

4
encoding symbols are not equal. The generalized Huffman coding problem
with unequal, integer symbol costs asks for a minimum-cost prefix free code
for P over an alphabet of size t where c(ai) ∈ Z+ for all ai ∈ Σ. Develop a
dynamic programming algorithm for this problem that runs in O(nα+2) time
where α = max{c(ai) | ai ∈ Σ}.

Homework 7 4 Due: 4:00pm, Friday, March 18

Think about associating a length with each edge in the tree. Can you grow a tree and express its cost in terms of the number of leaves it currently has, as well as the height of every non-leaf path?

