
CSCI 280: Algorithms – Spring 2016 Brent Yorgey

The questions on this problem set are due
to Jeff Erickson: http://www.cs.
illinois.edu/~jeffe/teaching/
algorithms.

Question 1. Suppose we are maintaining a data structure under a series of n
operations. Let f (k) denote the actual running time of the kth operation. For
each of the following functions f , determine the resulting amortized cost of a
single operation.

1. f (k) is the largest integer i such that 2i divides k.

2. f (k) = k if k is a power of 2, and f (k) = 1 otherwise.

3. f (k) = k is k is a Fibonacci number, and f (k) = 1 otherwise.

4. Let T be a complete binary search tree, storing the integer keys 1 through
n. f (k) is the number of ancestors of node k.

Question 2. An extendable array is a data structure that stores a sequence of
items and supports the following operations:

• ADDTOFRONT(x) adds x to the beginning of the sequence.

• ADDTOEND(x) adds x to the end of the sequence.

• LOOKUP(k) returns the kth item in the sequence, or NULL if the current
length of the sequence is less than k.

Describe and analyze a simple data structure that implements an extend-
able array. Your ADDTOFRONT and ADDTOBACK algorithms should take
O(1) amortized time, and your LOOKUP algorithm should take O(1) worst-
case time. The data structure should use O(n) space, where n is the current
length of the sequence.

Question 3. Describe how to implement a queue using two stacks and O(1)
additional memory, so that the amortized time for any enqueue or dequeue
operation is O(1). The only access you have to the stacks is through the
standard methods PUSH and POP.

Question 4. Suppose we can insert or delete an element into a hash table
in O(1) time. In order to ensure that our hash table is always big enough,
without wasting a lot of memory, we will use the following global rebuilding
rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new
table twice as big as our current table, insert everything into the new table,
and then free the old table.

• After a deletion, if the table is less than 1/4 full, we allocate a new table
half as big as our current table, insert everything into the new table, and
then free the old table.

Show that for any sequence of insertions and deletions, the amortized time
per operation is still O(1). Hint: Do not use potential functions.

Homework 8 1 Due: 4:00pm, Friday, April 8

http://www.cs.illinois.edu/~jeffe/teaching/algorithms
http://www.cs.illinois.edu/~jeffe/teaching/algorithms
http://www.cs.illinois.edu/~jeffe/teaching/algorithms

