The Fast Fourier Transform

March 3, 2017

Representation 1: coefficients.

$$a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$$

- Addition: O(n)
- Evaluation: O(n)Horner's method: $a_0 + x(a_1 + x(a_2 + \cdots + x(a_n) \dots))$
- Multiplication (convolution): $O(n^2)$ $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_0b_2)x^2 + \dots$

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has exactly n complex roots.

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has exactly n complex roots.

Corollary

A degree-n polynomial is uniquely specified by its value at n+1 distinct x-coordinates.

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has exactly n complex roots.

Corollary

A degree-n polynomial is uniquely specified by its value at n + 1 distinct x-coordinates.

Proof.

If f and g are two degree-n polynomials which have the same value at each of n+1 distinct x-coordinates, consider the polynomial f-g: it has n+1 roots but degree $\leq n$; the only way for this to happen is if f-g=0, that is, f=g.

Representation 2: point-value

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots (x_n, f(x_n))$$

Representation 2: point-value

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots (x_n, f(x_n))$$

Addition and multiplication are easy:

$$(f+g)(x_i) = f(x_i) + g(x_i)$$
$$(fg)(x_i) = f(x_i)g(x_i)$$

Representation 2: point-value

$$(x_0, f(x_0)), (x_1, f(x_1)), \dots (x_n, f(x_n))$$

Addition and multiplication are easy:

$$(f+g)(x_i) = f(x_i) + g(x_i)$$
$$(fg)(x_i) = f(x_i)g(x_i)$$

- Addition: O(n).
- Evaluation: $O(n^2)$ (Lagrange's method)
- Multiplication: O(n)

Converting Between Polynomial Representations

Tradeoff: fast evaluation or fast multiplication. We want both!

Representation	Multiply	Evaluate
Coefficient	$O(n^2)$	O(n)
Point-value	O(n)	$O(n^2)$

$$a_0, a_1, \ldots, a_{n-1} \xrightarrow{?} (x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$$

Converting Between Polynomial Representations Brute Force

Coefficient to point-value. Given a polynomial $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \ldots, x_{n-1} .

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

(Vandermonde matrix—invertible iff x_i distinct) $O(n^2)$ for matrix-vector multiplication.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

- $A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$.
- $A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \ldots, x_{n-1} .

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

- $A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$.
- $A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$.
- $A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \ldots, x_{n-1} .

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

•
$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$$
.

•
$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$
.

•
$$A(-x) = A_{\text{even}}(x^2) - xA_{\text{odd}}(x^2)$$
.

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \dots, x_{n-1} .

Divide. Break polynomial up into even and odd powers.

•
$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$
.

•
$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$$
.

•
$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$$
.

•
$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$
.

•
$$A(-x) = A_{\text{even}}(x^2) - xA_{\text{odd}}(x^2)$$
.

Intuition. For two points, choose ± 1 .

$$A(1) = A_{ ext{even}}(1) + 1A_{ ext{odd}}(1) \ A(-1) = A_{ ext{even}}(1) - 1A_{ ext{odd}}(1).$$

$$A(1) = A_{\text{even}}(1) + A_{\text{odd}}(1)$$

 $A(-1) = A_{\text{even}}(1) - A_{\text{odd}}(1).$

Can evaluate polynomial of degree $\leq n$ at 2 points by evaluating two polynomials of degree $\leq n/2$ at 1 point.

$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$

$$A(-x) = A_{\text{even}}(x^2) - xA_{\text{odd}}(x^2).$$

Intuition. For four points, choose

$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$

$$A(-x) = A_{\text{even}}(x^2) - xA_{\text{odd}}(x^2).$$

Intuition. For four points, choose $\pm 1, \pm i$.

$$egin{aligned} A(1) &= A_{
m even}(1) + 1A_{
m odd}(1) \ A(-1) &= A_{
m even}(1) - 1A_{
m odd}(1) \ A(i) &= A_{
m even}(-1) + iA_{
m odd}(-1) \ A(-i) &= A_{
m even}(-1) - iA_{
m odd}(-1). \end{aligned}$$

$$egin{aligned} A(1) &= A_{
m even}(1) + 1A_{
m odd}(1) \ A(-1) &= A_{
m even}(1) - 1A_{
m odd}(1) \ A(i) &= A_{
m even}(-1) + iA_{
m odd}(-1) \ A(-i) &= A_{
m even}(-1) - iA_{
m odd}(-1). \end{aligned}$$

Can evaluate polynomial of degree $\leq n$ at 4 points by evaluating two polynomials of degree $\leq n/2$ at 2 points.

Roots of Unity

Definition

An *n*th root of unity is a complex number x such that $x^n = 1$.

- The *n*th roots of unity are: $\omega^0, \omega^1, \dots, \omega^{n-1}$ where $\omega = e^{2\pi i/n}$.
- The n/2th roots of unity are: $\nu^0, \nu^1, \dots, \nu^{n/2-1}$ where $\nu = e^{4\pi i/n}$.
- $\omega^2 = \nu$.

Discrete Fourier Transform

Coefficient to point-value. Given $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, evaluate it at n distinct points x_0, \ldots, x_{n-1} .

Key idea: choose $x_k = \omega^k$ where ω is a principal kth root of unity.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \dots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \dots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

(Fourier matrix F_n)

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial $A(x) = a_0 + \cdots + a_{n-1}x^{n-1}$ at the nth roots of unity $\omega^0, \ldots, \omega^{n-1}$. (Assume n is power of 2.)

Divide. Break up polynomial into even and odd parts.

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n/2-2} x^{(n-1)/2}$$

$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n/2-1} x^{(n-1)/2}$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2).$$

Conquer. Evaluate A_{even} and A_{odd} at $\nu^0, \dots \nu^{n/2-1}$.

Combine.
$$(\omega^{k+n/2} = -\omega^k; \ \nu^k = (\omega^k)^2 = (\omega^{k+n/2})^2)$$

$$A(\omega^k) = A_{\text{even}}(\nu^k) + \omega^k A_{\text{odd}}(\nu^k) \qquad 0 \le k < n/2$$

$$A(\omega^{k+n/2}) = A_{\text{even}}(\nu^k) - \omega^k A_{\text{odd}}(\nu^k) \qquad 0 \le k < n/2$$

FFT: Algorithm

Algorithm 1 FFT

```
Require: Size n, coefficients a_0, a_1, \ldots, a_{n-1}
 1: if n=1 then
 2:
        return a<sub>0</sub>
 3: end if
 4: (e_0, e_1, \dots, e_{n/2-1}) \leftarrow FFT(n/2, a_0, a_2, a_4, \dots, a_{n-2})
 5: (d_0, d_1, \ldots, d_{n/2-1}) \leftarrow FFT(n/2, a_1, a_3, a_5, \ldots, a_{n-1})
 6: for k = 0 to n/2 - 1 do
 7: \omega^k \leftarrow e^{2\pi i k/n}
 8: y_k \leftarrow e_k + \omega^k d_k
      y_{k+n/2} \leftarrow e_k - \omega^k d_k
10: end for
11: return (y_0, y_1, \dots, y_{n-1})
```

FFT Summary

Theorem

The FFT algorithm evaluates a degree n-1 polynomial at each of the nth roots of unity in $O(n \log n)$ time (assuming n is a power of two).

Proof.

$$T(n) = 2T(n/2) + O(n) \implies T(n) = O(n \log n).$$

$$a_0, a_1, \ldots, a_{n-1} \xrightarrow{O(n \log n)} (x_0, y_0), \ldots, (x_{n-1}, y_{n-1})$$

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values y_0, \ldots, y_{n-1} of a degree n-1 polynomial at the n points $\omega^0, \omega^1, \ldots, \omega^{n-1}$, find the unique polynomial $a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$ that fits the given points.

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \dots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \dots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{bmatrix}^{-1} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix}$$

Inverse FFT!

Claim

The inverse of the Fourier matrix F_n is given by

$$G_{n} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \dots & \omega^{-(n-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \dots & \omega^{-2(n-1)} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \dots & \omega^{-3(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \omega^{-3(n-1)} & \dots & \omega^{-(n-1)(n-1)} \end{bmatrix}.$$

Corollary

To compute the inverse FFT, apply the same algorithm but use $\omega^{-1} = \mathrm{e}^{-2\pi i/n}$ as the principal nth root of unity, and divide by n.

Inverse FFT: Proof of Correctness

Theorem

 F_n and G_n are inverse.

Lemma

Let ω be a principal nth root of unity. Then

$$\sum_{j=0}^{n-1} \omega^{kj} = \begin{cases} n & \text{if } k \equiv 0 \pmod{n} \\ 0 & \text{otherwise} \end{cases}$$

Proof.

- If k is a multiple of n then $\omega^{kj} = 1$.
- Every *n*th root of unity ω^k is a root of $x^n-1=(x-1)(1+x+x^2+\cdots+x^{n-1})$. Hence if $\omega^k\neq 1$, we have $1+\omega^k+\omega^{k(2)}+\cdots+\omega^{k(n-1)}=0$.

Inverse FFT: Proof of Correctness

Theorem

 F_n and G_n are inverse.

Note
$$(F_n)_{ij} = \omega^{ij}$$
, and $(G_n)_{ij} = \frac{1}{n}\omega^{-ij}$.

Proof.

$$(F_n G_n)_{kk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'}$$

$$= \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j}$$

$$= \begin{cases} 1 & k = k' \\ 0 & \text{otherwise} \end{cases}$$

Inverse FFT: Algorithm

Algorithm 2 IFFT

```
Require: Size n, coefficients a_0, a_1, \ldots, a_{n-1}
 1: if n=1 then
 2:
        return a<sub>0</sub>
 3: end if
 4: (e_0, e_1, \dots, e_{n/2-1}) \leftarrow IFFT(n/2, a_0, a_2, a_4, \dots, a_{n-2})
 5: (d_0, d_1, \dots, d_{n/2-1}) \leftarrow IFFT(n/2, a_1, a_3, a_5, \dots, a_{n-1})
 6: for k = 0 to n/2 - 1 do
 7: \omega^k \leftarrow e^{-2\pi i k/n}
     v_k \leftarrow (e_k + \omega^k d_k)/n
       y_{k+n/2} \leftarrow (e_k - \omega^k d_k)/n
10: end for
11: return (y_0, y_1, \dots, y_{n-1})
```

Inverse FFT Summary

Theorem

The inverse FFT algorithm interpolates a degree n-1 polynomial, given values at each of the nth roots of unity, in $O(n \log n)$ time.

$$a_0, a_1, \dots, a_{n-1} \xrightarrow{O(n \log n)} (x_0, y_0), \dots, (x_{n-1}, y_{n-1})$$

Polynomial Multiplication

Theorem

We can multiply two degree n-1 polynomials in $O(n \log n)$ time.

FFT in Practice

Fastest Fourier transform in the West.

[Frigo and Johnson, http://www.fftw.org]

- Optimized C library.
- Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software.
- Portable, competitive with vendor-tuned code.

Implementation details.

- Instead of executing predetermined algorithm, it evaluates your hardware and uses a special-purpose compiler to generate an optimized algorithm catered to "shape" of the problem.
- $O(n \log n)$, even for prime sizes.

Integer Multiplication

Given two n bit integers $a=a_{n-1}\dots a_1a_0$ and $b=b_{n-1}\dots b_1b_0$, compute their product $c=a\times b$.

FFT algorithm.

- Form polynomials, **e.g.** $A(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$.
- Note: a = A(2), b = B(2).
- Compute C(x) = A(x)B(x) via FFT.
- Evaluate C(2) = ab.
- Running time: $O(n \log n)$ complex **arithmetic operations**.

Theory. [Schönhage-Strassen 1971] $O(n \log n \log \log n)$ bit operations.

Practice. GNU Multiple Precision Arithmetic Library (GMP) claims to be "the fastest bignum library on the planet." For multiplication it uses brute force $(O(n^2))$, Karatsuba $(O(n^{1.59}))$, Toom-Cook (generalization of Karatsuba), and FFT, depending on n.