The Fast Fourier Transform

March 3, 2017

Polynomial representations

Representation 1: coefficients.

ap + aix + 32X2 + -4 an_lx”_l

¢ Addition: O(n)
e Evaluation: O(n)

Horner's method: ap + x(a1 + x(a2 + - - + x(an) .. .))
e Multiplication (convolution): O(n?)

aobo + (agb1 + a1bo)x + (aopb2 + a1br + aoh2)x? + . ..

Polynomial representations

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has
exactly n complex roots.

Polynomial representations

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has
exactly n complex roots.

Corollary

A degree-n polynomial is uniquely specified by its value at n + 1
distinct x-coordinates.

Polynomial representations

Theorem (Fundamental Theorem of Algebra)

Any nonzero degree-n polynomial with complex coefficients has
exactly n complex roots.

Corollary

A degree-n polynomial is uniquely specified by its value at n + 1
distinct x-coordinates.

Proof.

If f and g are two degree-n polynomials which have the same value
at each of n+ 1 distinct x-coordinates, consider the polynomial

f — g: it has n+ 1 roots but degree < n; the only way for this to
happenisif f —g =0, thatis, f = g. []

Polynomial representations

Representation 2: point-value

(x0, F(x0)), (x1, F(x1)), ... (Xn, F(xn))

Polynomial representations

Representation 2: point-value

(x0, F(x0)), (x1, F(x1)), ... (Xn, F(xn))

Addition and multiplication are easy:

(f +8)(xi)
(fg)(x)

(xi) + &(xi)

f(x;
f(xi)g(xi)

Polynomial representations

Representation 2: point-value

(x0, F(x0)), (x1, F(x1)), ... (Xn, F(xn))

Addition and multiplication are easy:

(f +8)(xi)
(fg)(x)

(xi) + &(xi)

f(x;
f(xi)g(xi)

e Addition: O(n).
e Evaluation: O(n?) (Lagrange's method)
e Multiplication: O(n)

Converting Between Polynomial Representations

Tradeoff: fast evaluation or fast multiplication. We want both!

Representation Multiply Evaluate
Coefficient 0(n?) O(n)
Point-value O(n) O(n?)

ag,ai,...,an—1 (X0, ¥0), - -5 (Xn—1, ¥n—1)

Converting Between Polynomial Representations

Brute Force

Coefficient to point-value. Given a polynomial
ag + aix + - -+ + ap,_1x"" L, evaluate it at n distinct points

X0y -3 Xn—1-
_ - _ 9 nelq -
Y0 1 xo X5 X ao
2 n—1
Vi 1 x1 x{ .o0Xx . ai
vol=|1 x X3 ... x5 ar
-1
| Yn—1] 11 xp—1 X,27_1 e Xr,:—l_ | an—1 |

(Vandermonde matrix—invertible iff x; distinct)
O(n?) for matrix-vector multiplication.

Coefficient to Point-Value: Intuition
Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,
evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

Coefficient to Point-Value: Intuition

Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,

evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

® Aeven(X) = ag + azxx + 84X2 + 36X3.

Coefficient to Point-Value: Intuition

Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,

evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

® Aeven(X) = ag + azxx + 84X2 + 36X3.

o Aqd(x) = a1 + azx + asx? + a7x3.

Coefficient to Point-Value: Intuition

Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,

evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

® Aeven(X) = ag + azxx + 84X2 + 36X3.

o Aqd(x) = a1 + azx + asx? + a7x3.

o A(x) = Aeven(x?) + xAoaa(x?).

Coefficient to Point-Value: Intuition

Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,

evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

® Aeven(X) = ag + azxx + 84X2 + 36X3.

o Aqd(x) = a1 + azx + asx? + a7x3.
o A(X) = Acven(x?) + xAoda(x?).

® A(_X) = Aeven(Xz) - XAOdd(Xz)'

Coefficient to Point-Value: Intuition

Coefficient to point-value. Given ag + aix + - - - + ap_1x" 1,

evaluate it at n distinct points xp, ..., Xn_1.

Divide. Break polynomial up into even and odd powers.

o A(x) = ap + arx + apx® + a3x3 + agx* + asx® + agx® + arx’.

® Aeven(X) = ag + azxx + 84X2 + 36X3.

o Aqd(x) = a1 + azx + asx? + a7x3.
o A(X) = Acven(x?) + xAoda(x?).

o A(—x) = Acven(X?) — xAoaa(x?).
Intuition. For two points, choose £1.

A(l) = Aeven(l) + 1A0dd(]-)
A(~1) = Aeven(1) — 1Aoaa(1).

Coefficient to Point-Value: Intuition

A(1)
A(-1)

even(l) + Aodd(l)

A
Aeven(l) - Aodd(l)-

Can evaluate polynomial of degree < n at 2 points by
evaluating two polynomials of degree < n/2 at 1 point.

Coefficient to Point-Value: Intuition

A(X) = Aeven(Xz) + XAodd(Xz)
A(—x) = Acven(x?) — xAoda(x?).

Intuition. For four points, choose

Coefficient to Point-Value: Intuition

A(X) = Aeven(Xz) + XAodd(Xz)
A(—x) = Acven(x?) — xAoda(x?).

Intuition. For four points, choose +1, +/.

A(1) = Acven(1) + 1Aaa(1)
A(—1) = Acven(1) — 1Agaa(1)

A(7) = Acven(—1) + iAoaa(—1)
A(=1) = Aeven(—1) — iAoaa(—1)

Coefficient to Point-Value: Intuition

A1) =
A(-1) =
A(i) =
A(=i) =

Aeven(l) + 1Aodd(1)
Aeven(1) — 1Acaa(1)
Aeven(—1) + iAoda(—1)
Aeven(—1) — iAoda(—1).

even

Can evaluate polynomial of degree < n at 4 points by
evaluating two polynomials of degree < n/2 at 2 points.

Roots of Unity

Definition
An nth root of unity is a complex number x such that x” = 1.
e The nth roots of unity are: w% w!,...,w""! where
W= e27ri/n.
e The n/2th roots of unity are: 10,0, ... v"/2~1 where
v = e¥mi/n
2

o W =1UV.

Discrete Fourier Transform

Coefficient to point-value. Given ag + aix + -+ + ap_1x"~

evaluate it at n distinct points xg, ..., Xp—1.

1

Key idea: choose xx = wk where w is a principal kth root of unity.

Yo
Y1
2
y3

Yn—1

= e

1

W

1 1 1
w! w? w3
w? w? w®
w3 wb w?

n—1 w2(r.171) W3(n-1)

(Fourier matrix F,)

ao
ai
as
as

an—1

Fast Fourier Transform

Goal. Evaluate a degree n — 1 polynomial
A(x) = ag + -+ + ap_1x""! at the nth roots of unity

WO, ...,w" L. (Assume n is power of 2.)

Divide. Break up polynomial into even and odd parts.
Aeven(X) = a0 + axx + agx® 4 -+ an/2_2x("—1)/2

Aodd(x) = a1 + azx + asx® + -+ + a5 x("D/2
A(X) = Aeven(X2) + XAOdd(X2).

Conquer. Evaluate Agyen and Agqq at 22, ... "2 1,

Combine. (wkt7/2 = —wk; vk = (k)2 = (wkt1/2)2)

AWH) = Acyen (V¥) + WK Agaa(r*) 0 < k < n/2
AWF2) = Agyen(vF) — Wk Acaa(*) 0 < k < n/2

FFT: Algorithm

Algorithm 1 FFT

Require: Size n, coefficients ag, a1, ..., an—1

1:

10:
11:

if n=1 then
return ag

2
3: end if

4: (eo,€1,-.-,€p2-1) < FFT(n/2, a0, a2, as,
5:
6
7
8
9

(do, di,..., dn/2—1) — FFT(I'I/2, a1, az, ds,

: for k=0to n/2—1do

wk « e27rik/n

Vi e + wkdy
Yk+n/2 < €k — wkdy
end for
return (yo,y1,.--,Yn-1)

...,a,,_g)
...,a,,,l)

FFT Summary

Theorem

The FFT algorithm evaluates a degree n — 1 polynomial at each of
the nth roots of unity in O(nlog n) time (assuming n is a power of

two).
Proof.
T(n) =2T(n/2)+ O(n) = T(n) = O(nlogn). O

O(nlog n)

ag,ai,...,an—1 _ (x0,%0)s - - -+ (Xn—1, ¥Yn—1)

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the values yp, ...

at the n points w%, w

ao
al
a
as

an—1

=

—_

£ & &
w v =

1

,...,w" L find the unique polynomial
ag + aix + - - - + ap_1x"" ! that fits the given points.

w

[y

£ & &
NI Y

2(n—1)

W

=

£ & &
© o w

3(n;1)

w(n=1)(n—1)

, ¥n—1 of a degree n — 1 polynomial

Yo
y1
2
y3

Yn—1

Inverse FFT!

Claim
The inverse of the Fourier matrix F, is given by

1 1 1 1
1 wl w? w3
1|1 w2 wt w™o
Gn = E 1 w73 w76 wig
1 w—(.n—l) w—2(.n—1) w—3(n—1)
Corollary

1
w_(n_l)
w—2(n—1)
w—3(n—1)

w—(n=1)(n—1)

To compute the inverse FFT, apply the same algorithm but use
w1 = e72m/" 35 the principal nth root of unity, and divide by n.

Inverse FFT: Proof of Correctness

Theorem
F, and G,, are inverse.

Lemma
Let w be a principal nth root of unity. Then

"Ziwkj:{n ifk=0 (mod n)
j=0

0 otherwise

Proof.

e If k is a multiple of n then w® = 1.

e Every nth root of unity wX is a root of
x"—1=(x— 1)(1—|—x—|—x2+---+x"*1). Hence if wk #1,
we have 1+ wk + wk@ ... 4 k(n—1) — ¢

O

Inverse FFT: Proof of Correctness

Theorem
F, and G, are inverse.

Note (Fn)lj = wij’ and (Gn)U — lwflJ
Proof.

1 [s
(FnGn)kkw = — Zwaw—Jk
n
j=0
1222 ,
—— Z k=K
n <
j=0

1 k=K
10 otherwise

Inverse FFT: Algorithm

Algorithm 2 IFFT

Require: Size n, coefficients ag, a1, ..., an—1
1: if n=1 then

2 return ag

3: end if

4: (eo,e1,---,€p2-1) + IFFT(n/2, a0, a2, as,
5: (do, di,..., dn/2—1) — /FFT(H/Q, ai, as, as,
6: for k=0to n/2—1do

70wk « e—2mik/n

8 Vi (ek—i—wkdk)/n

9: Yk+nj2 € (ek — wkdk)/n

10: end for

11: return (yo,y1,---,¥Yn-1)

...,an_z)
...,a,,,l)

Inverse FFT Summary

Theorem
The inverse FFT algorithm interpolates a degree n — 1 polynomial,
given values at each of the nth roots of unity, in O(nlog n) time.

O(nlog n)

a0,4d1,...,4dn-1 (XanO)v"')(anhynfl)
O(nlogn)

Polynomial Multiplication

Theorem
We can multiply two degree n — 1 polynomials in O(nlog n) time.

dap,d1...dn—1

by, b1...bp_1 €0, C1y-- -5 C2n—1
FFT | O(nlogn) IFFT | O(nlog n)
A(wo) L. A(w2”_1) Point-value mult 0 2n—1
R C e n
B(O),...,Bw 1) o) (@) ™)

FFT in Practice

Fastest Fourier transform in the West.
[Frigo and Johnson, http://www.fftw.org|

e Optimized C library.

o Features: DFT, DCT, real, complex, any size, any dimension.

e Won 1999 Wilkinson Prize for Numerical Software.

e Portable, competitive with vendor-tuned code.
Implementation details.

e Instead of executing predetermined algorithm, it evaluates
your hardware and uses a special-purpose compiler to generate
an optimized algorithm catered to “shape” of the problem.

e O(nlogn), even for prime sizes.

http://www.fftw.org

Integer Multiplication

Given two n bit integers a = a,_1...a1ap and b= b,,_1 ... by by,
compute their product ¢ = a x b.
FFT algorithm.

e Form polynomials, e.g. A(
e Note: a = A(2), b= B(2).
e Compute C(x) = A(X)B(x) via FFT.
e Evaluate C(2) = ab.

¢ Running time: O(nlog n) complex arithmetic operations.

x)=ag+aix+---+a,_1x" L.

Theory. [Schonhage-Strassen 1971] O(nlog nloglog n) bit
operations.

Practice. GNU Multiple Precision Arithmetic Library (GMP) claims
to be “the fastest bignum library on the planet.” For multiplication
it uses brute force (O(n?)), Karatsuba (O(n'-*?)), Toom-Cook
(generalization of Karatsuba), and FFT, depending on n.

