
CSCI 280: Algorithms – Spring 2017 Brent Yorgey

Question 1 (K&T 2.2). Suppose you have algorithms with the six running
times listed below. (Assume these are the exact number of operations per-
formed as a function of the input size n.) Suppose you have a computer that
can perform 1010 operations per second, and you need to compute a result
in at most an hour of computation. For each of the algorithms, what is the
largest input size n for which you would be able to get the result within an
hour?

1. n2

2. n3

3. 100n2

4. n log2 n

5. 2n

6. 22n

Question 2 (K&T 2.3). Take the following list of functions and arrange
them in ascending order of growth rate. That is, if function g(n) immediately
follows function f (n) in your list, then it should be the case that f (n) is
O(g(n)). Please prove your claims.

1. f1(n) = n2.5

2. f2(n) =
√

2n

3. f3(n) = n + 10

4. f4(n) = 10n

5. f5(n) = 100n

6. f6(n) = n2 log n

Question 3. Characterize the asymptotic behavior of each of the following in
terms of big-Theta. Prove/justify your answers.

• Total number of nodes in a balanced binary tree with n leaves.

• Number of edges in a graph with n nodes, where every node is connected
to every other node.

• Time to find a given element in a sorted array of length n.

• Number of three-element subsets of a set of size n.

• Number of ways to seat n people around a circular table.

• Time to find a given element in a linked list of length n.

Homework 2 1 Due: 4:00pm, Friday, February 3

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

• Biggest number that can be represented with n bits.

• Time to sort a list of n items if you are only allowed to swap adjacent
elements.

• Time to check whether two lists containing n integers each (not necessar-
ily sorted) have any element in common.

Question 4 (K&T 2.8). You’re doing some stress-testing on various models
of glass jars to determine the height from which they can be dropped and
still not break. The setup for this experiment, on a particular type of jar, is
as follows. You have a ladder with n rungs, and you want to find the highest
rung from which you can drop a copy of the jar and not have it break. We call
this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung,
see if it breaks, and then recursively try from rung n/4 or 3n/4 depending on
the outcome. But this has the drawback that you could break a lot of jars in
finding the answer.

If your primary goal were to conserve jars, on the other hand, you could
try the following strategy. Start by dropping a jar from the first rung, then the
second rung, and so forth, climbing one higher each time until the jar breaks.
In this way, you only need a single jar—at the moment it breaks, you have the
correct answer—but you may have to drop it n times (rather than log n as in
the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you’re
willing to break more jars. To understand better how this trade-off works at
a quantitative level, let’s consider how to run this experiment given a fixed
“budget” of k ≥ 1 jars. In other words, you have to determine the correct
answer—the highest safe rung—and can use at most k jars in doing so.

(a) Suppose you are given a budget of k = 2 jars. Describe a strategy for
finding the highest safe rung that requires you to drop a jar at most f (n)
times, for some function f (n) that grows slower than linearly. (In other
words, f (n) should be o(n), that is, limn→∞ f (n)/n = 0.)

(b) Now suppose you have a budget of k > 2 jars, for some given k. De-
scribe a strategy for finding the highest safe rung using at most k jars.
If fk(n) denotes the number of times you need to drop a jar accord-
ing to your strategy, then the functions f1, f2, f3, . . . should have the
property that each grows asymptotically slower than the previous one:
limn→∞ fk(n)/ fk−1(n) = 0 for each k.

Question 5 (Subinterval sums, K&T 2.6). Consider the following basic prob-
lem. You’re given an array A consisting of n integers A[1], A[2], . . . , A[n].
You’d like to output a two-dimensional n × n array B in which B[i, j] (for
i ≤ j) contains the sum of array entries A[i] through A[j]—that is, the subin-
terval sum A[i] + A[i + 1] + · · ·+ A[j]. (The value of array entry B[i, j] is

Homework 2 2 Due: 4:00pm, Friday, February 3

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

left unspecified whenever i > j, so it doesn’t matter what is output for these
values.)

For example, given the array A = [1, 5, 7, 2], the desired output B would
be

1 6 13 15
5 12 14

7 9
2

 .

(Note this is formulated slightly differently than K&T 2.6, which only re-
quires B[i, j] to be defined when i < j, but that is silly. The sum A[i] + A[i +
1] + · · ·+ A[j] is perfectly well-defined when i = j; it is equal to A[i]. (For
that matter, the sum is perfectly well-defined when i > j too (it is 0), but let’s
ignore that.))

Here’s a simple algorithm to solve this problem.

1: for i← 1 . . . n do
2: for j← i . . . n do
3: Add up array entries A[i] through A[j]
4: Store the result in B[i, j]
5: end for
6: end for

Note that j starts at i, not at 1.

(a) For some function f that you should choose, give a bound of the form
O(f (n)) on the running time of this algorithm on an input of size n (i.e., a
bound on the number of operations performed by the algorithm).

(b) For this same function f , show that the running time of the algorithm on
an input of size n is also Ω(f (n)). (This shows an asymptotically tight
bound of Θ(f (n)) on the running time.)

(c) Although the algorithm you analyzed in parts (a) and (b) is the most natu-
ral way to solve the problem—after all, it just iterates through the relevant
entries of the array B, filling in a value for each—it contains some highly
unnecessary sources of inefficiency. Give a different algorithm to solve
this problem, with an asymptotically better running time. In other words,
you should design an algorithm with running time o(f (n)).

Question 6. On a scale of 1 to 10, how difficult was this assignment? How
many hours would you estimate that you spent on it? (Note that these are two
separate questions, though of course they are probably correlated. It is quite
possible to have a difficult but short or easy but long assignment.)

Homework 2 3 Due: 4:00pm, Friday, February 3

