
CSCI 280: Algorithms – Spring 2017 Brent Yorgey

1
Question 1. Prove: for all n ≥ 1, if G is a connected graph with n vertices
and n− 1 edges, then G has no cycles.

Question 2. Let G = (V, E) be an undirected graph with n vertices and m

2

edges, with no self-loops (that is, no edges of the form (v, v) from a vertex
to itself). Show that if every vertex has degree at least n/2, the graph is
connected. If it makes your proof easier, you may assume that n is even.

Question 3 (K&T 3.9). There’s a natural intuition that two nodes that are
far apart in a communication network—separated by many hops—have a
more tenuous connection than two nodes that are close together. There are a
number of algorithmic results that are based to some extent on different ways
of making this notion precise. Here’s one that involves the susceptibility of
paths to the deletion of nodes.

3
Suppose that an undirected graph G = (V, E) with n vertices contains

two nodes s and t such that the distance between s and t is strictly greater
than n/2. Show that there must exist some node v, not equal to either s or
t, such that deleting v from G destroys all s − t paths. (In other words, the
graph obtained from G by deleting v contains no path from s to t.) Give
an algorithm with running time Θ(m + n) to find such a node v. Describe
your algorithm in prose and prove that it works correctly. Make sure your
algorithmic description is clear and concise.

Question 4. Consider the family of undirected graphsHk defined as follows.
Hk has 2k vertices labelled with the integers 0 through 2k − 1. Vertices u and
v are connected by an edge if and only if the binary representations of u and
v differ in exactly one bit position. For example, inH4, the vertices 5 and 13
are connected by an edge since 5 = 01012 and 13 = 11012 differ in the first
bit position, but the rest of the bits are the same.

Consider doing a BFS inH10 starting at node 0. How many vertices are in
L6, that is, the sixth layer generated by the BFS? Give your answer together
with either a proof, or the program you used to calculate the answer. Either
approach will receive full credit. (Hint if you choose to write a program:
to flip the jth bit of an integer n, you can use n ^ (1 << j), that is,
the bitwise XOR of n with 2j. These operators are valid syntax in many
languages such as Java, Python, and C.)

Question 5. As in the text, we say that the distance between two nodes u

5
and v in a graph G = (V, E) is the minimum number of edges in a path
joining them; we’ll denote this by dist(u, v). We say that the diameter of G is
the maximum distance between any pair of nodes, that is,

diam(G) = max
u,v∈V

dist(u, v).

Give an O(n + m)-time algorithm to find the diameter of an (undirected)
tree T = (V, E). Prove that your algorithm is correct.

Homework 3 1 Due: 4:00pm, Friday, February 10

Start by proving the handshake lemma: the sum of all vertex degrees is twice the number of edges.
Think about cuts in the graph. A cut (S,T) is a partition of the vertices into two sets S and T such that every vertex is in either S or T but not both.
Imagine performing a breadth-first search starting from s. How large is each layer along the way to t?
Pick an arbitrary starting vertex u and find the vertex s which is farthest from u. Then prove that the distance from s to the vertex farthest from it is the diameter.


CSCI 280: Algorithms – Spring 2017 Brent Yorgey

Question 6. Does your algorithm from Question 5 work for all undirected
graphs? If so, prove it. If not, provide a counterexample.

Question 7.

• On a scale of 1 to 10, how difficult was this assignment?

• How many hours would you estimate that you spent on it?

• Which was your favorite question? Your least favorite?

Extra credit: Approximating the diameter of a graph

Question 8. There’s a good chance your linear-time algorithm in Ques-
tion 5 doesn’t extend to arbitrary undirected graphs. (If it does, you almost
certainly have a STOC publication. Congratulations!) It turns out that, until
very recently, we didn’t have any method for computing the diameter of a
graph that didn’t first compute the shortest path between all pairs of nodes.
When graphs are dense, all-pairs shortest paths is fairly expensive, so some
people have explored quicker algorithms which estimate the diameter of the
graph. Develop a linear-time algorithm that, given a graph G, returns a diam-
eter estimate that is always within a factor of 1/2 of the true diameter. That
is, if the true diameter is diam(G) then you should return a value k where
diam(G)/2 ≤ k ≤ diam(G).

Homework 3 2 Due: 4:00pm, Friday, February 10


