
CSCI 280: Algorithms – Spring 2017 Brent Yorgey

Reminder: as specified in the Computer Science Academic Integrity Pol-
icy, you should not look at any other student’s code. You are free to discuss
data structures, general approaches, and so on; for any specific debugging
help you should come to me.

Question 1. On the course website you will find several data files describing
directed graphs. The format of each file is as follows:

• The first line contains a single integer n giving the number of nodes in the
graph.

• The second line contains a single integer m giving the number of edges.

• Each of the following m lines contains a pair of integers x and y separated
by a space, indicating a directed edge from node x to node y. The nodes
are numbered 0 through n − 1.

For example, demo-cycle.in looks like this:

10

18

5 0

1 8

2 5

3 5

4 0

6 2

9 3

4 9

6 7

7 4

7 5

9 5

2 9

4 1

7 0

2 7

6 3

4 6

It describes a directed graph with 10 nodes (numbered 0 through 9) and 18
edges. The edges are (5, 0), (1, 8), and so on.

For each input graph, you should determine whether it is a DAG or not
(that is, whether or not it is acyclic). In addition:

• If it is a DAG, you should specify a topological ordering.

• If it is not a DAG, you should specify a directed cycle in the graph.

Homework 4 1 Due: 4:00pm, Friday, February 17

http://ozark.hendrix.edu/~yorgey/ac-integrity-policy.html
http://ozark.hendrix.edu/~yorgey/ac-integrity-policy.html


CSCI 280: Algorithms – Spring 2017 Brent Yorgey

For each input graph, you should create an output file with the following
format:

• For <FILENAME>.in the corresponding output file should be called
<FILENAME>.out.

• The first line of the output file should contain either the string DAG or the
string cycle, indicating whether or not the input graph is a DAG.

• If the first line contains DAG, the remaining lines should list all the vertices
of the graph in some topological ordering, with one vertex per line.

• If the first line contains cycle, the remaining lines should list the vertices
contained in some directed cycle. The first vertex should not be repeated at
the end.

For example, one correct output for demo-cycle.in is contained in
demo-cycle.out, and looks like this:

cycle

6

7

4

As you can verify, the graph described in demo-cycle.in does indeed
contain the edges (6, 7), (7, 4), and (4, 6), which form a directed cycle.

Likewise, a correct output for demo-dag.in (which is a DAG) is con-
tained in demo-dag.out. Note that in general there may be many different
correct output files, since a graph may contain many different cycles or many
possible topological orderings.

There are four sizes of graph: tiny (n = 10), small (n = 103), med
(n = 105) and big (n = 106). The graphs are sparse in the sense that they
have only O(n) edges. Note that a Θ(n2) algorithm will probably work for
tiny and small (and perhaps even for med if you are willing to wait long
enough), but you will almost certainly need a Θ(m + n) algorithm (which is
Θ(n) for these graphs) to solve the big graphs.

For each size, there are two graphs. You should not assume that there is
one DAG and one cyclic graph of each size!

You can use the provided Python program check-graph.py to check
your answers. Simply provide it with the name of the input graph file and the
name of your output file, like this:

$ python check-graph.py demo-cycle.in demo-cycle.out

Checking cycle...

Cycle looks good!

If the output is incorrect, the tool will give a counterexample, for example:

Homework 4 2 Due: 4:00pm, Friday, February 17



CSCI 280: Algorithms – Spring 2017 Brent Yorgey

$ python check-graph.py demo-cycle.in demo-dag.out

Checking DAG...

Found bad edge: 2 5

This means that although the output file claims to give a topological ordering
for the DAG, the edge (2, 5) is contained in the graph and goes backwards
from a later node in the ordering to an earlier one, so it is not in fact a topo-
logical ordering.

What to turn in

• Print out on paper any program(s) you write and turn them in.

• Electronically submit the output files containing topological orderings.
Remember that the output file for <FILENAME>.in should be named
<FILENAME>.out.

Grading scheme Each input graph is worth a certain number of points as
follows:

• tiny: 2 points each

• small: 3 points each

• med: 3 points each

• big: 2 points each

giving a total of 20 possible points. Full credit will be given for any correct
output file. Half credit will be given for an output file which correctly spec-
ifies DAG or cycle but does not give correct evidence for it. (For example,
if you determine that an input graph must have cycles but you do not know
how to find one, you could just turn in an output file containing the single line
cycle, with no list of vertices following; this would earn half credit.)

You are not required to write a program, but you will probably not be
able to get many points otherwise (you can certainly construct correct tiny
outputs by hand—in fact, I recommend it, as a way to determine whether
your program is behaving correctly!—but even the small graphs, with
n = 103, would probably be too tedious to do by hand). You must turn in
any programs you write, though the programs themselves will not be graded.

Question 2. How hard was this assigment, on a scale of 1–10? How long
would you estimate that you spent on it?

Homework 4 3 Due: 4:00pm, Friday, February 17


