
CSCI 280: Algorithms – Spring 2017 Brent Yorgey

Question 1. Suppose you are choosing between the following three algo-
rithms:

1. Algorithm A solves problems by dividing them into five subproblems of
half the size, recursively solving each subproblem, and then combining the
solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two sub-
problems of size n− 1 and then combining the solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine sub-
problems of size n/3, recursively solving each subproblem, and then
combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in asymptotic nota-
tion) and which would you choose?

Question 2 (K&T 5.1). You are interested in analyzing some hard-to-obtain
data from two separate databases. Each database contains n numerical
values—so there are 2n values total—and you may assume that no two values
are the same. You’d like to determine the median of this set of 2n values,
which we define to be the nth smallest value.

However, the only way you can access these values is through queries to
the databases. In a single query, you can specify a value k to one of the two
databases, and the chosen database will return the kth smallest value that it
contains. Since queries are expensive, you would like to compute the median
using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n)
queries. If it makes things easier, you may assume that n is a power of two.

Question 3. Recall that the Fibonacci numbers Fn are defined recursively by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2,

with the first few given by 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . You may assume
the following facts:

• Fn is O(φn) (where φ is the golden ratio, (1 +
√

5)/2).

• In addition to their definition, Fibonacci numbers satisfy the following
recurrences:

F2n+1 = F2
n + F2

n+1

F2n = 2FnFn+1 − F2
n

3

Homework 6 1 Due: 4:00pm, Friday, March 10

First, determine the number of bits needed to represent F_n.

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

Design an efficient algorithm to compute Fn, and analyze its running time. Be
careful to include the time needed for any multiplications and additions; since
the algorithm may need to deal with very large numbers, you may not assume
that arithmetic operations take O(1) time.

Question 4. An array A[1 . . . n] is said to have a majority element if more
than half of its entries are the same. Given an array, the task is to design an
efficient algorithm to tell whether the array has a majority element, and, if so,
to find that element. The elements of the array are not necessarily from some
ordered domain like the integers, and so there can be no comparisons of the
form A[i] > A[j]. You should think of the array elements as, say, JPEG files.
However, you can answer questions of the form A[i] = A[j] in O(1) time.

(a) Show how to solve this problem in O(n log n) time. Make sure to prove

4a
that your algorithm is correct (via induction) and give a recurrence relation
for the running time of your algorithm.

(b) (Extra credit) Can you give a linear-time algorithm?

4b

Convolutions and the FFT

You are expecting to receive a Very Important Message over a network, en-
coded as a sequence of bits. The message will only be sent once. Receiving
the message is so important that you decide to redundantly have two comput-
ers both listening for the message, just in case one of them doesn’t work.

This turns out to be an excellent idea; however, you only have the idea
at the last minute. When the message starts to arrive, computer A is listen-
ing, but you have not quite finished setting up computer B! So computer B
does not record some beginning portion of the message. You do finally get
computer B set up and it starts recording the message somewhere in the mid-
dle. And it’s a good thing you do, because a few seconds later, computer A
crashes! Thankfully computer B continues to work, and records the rest of
the message.

Here, then, is the situation: both computers recorded only part of the mes-
sage. Computer A recorded from the beginning of the message to somewhere
in the middle, and computer B recorded from a different point in the middle
to the end. The bits recorded by computer A and computer B overlap, but
you have no way to know how many bits are in the overlapping portion, since
you do not know how long the message is supposed to be, and network trans-
mission speeds are variable enough that you have no way to know how many
bits were transmitted between the time when B started recording and the time
when A crashed.

To make things worse, there can be occasional transmission errors, where
individual bits are flipped. So even during the portion of the message that
both computers were recording, there can be positions where computer A

Homework 6 2 Due: 4:00pm, Friday, March 10

Split the array into two equal-size subarrays. Would it help to know their majority elements?
Pair up A's elements. For each pair, if the two elements are different, discard both of them; if they are the same, keep just one. Show that afterwards, there are at most n/2 elements left, and that they have a majority element if A does.

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

recorded a 0 but computer B recorded a 1 (for example, A might have cor-
rectly recorded the intended bit, but a glitch caused computer B to record the
incorrect bit). The message uses an error-correcting code, so you will be able
to fix these incorrect bits—but not until you have reconstructed the whole
message!

You need to find the correct alignment, defined as the index of the bit
where computer B started recording. So, for example, if the first bit recorded
by computer B was the 973rd bit in the message, the correct alignment would
be 972. It is also useful to be able to talk about the overlap, defined as the
number of bits the two recordings have in common. The alignment and
overlap are related by the simple equation

alignment + overlap = |A|,

where |A| denotes the number of bits in the portion of the message recorded
by computer A.

With no way to deduce the correct alignment, you decide to simply try
all possible alignments and find the one that gives the best match between
the overlapping portions of A’s bits and B’s bits. Because of the occasional
errors, the overlap will probably never be perfect, but the hope is that many
more bits will correspond with the correct alignment than with any incorrect
alignment.1 1 Of course it is easy to imagine scenarios

where this does not work—for example,
if the middle of the message contains a
very long sequence like 101010101010 . . .
then many different alignments could all
match, but given that no one would bother to
send a message with so much redundancy,
it is reasonable to assume that the correct
alignment will correspond to the best match.

Formally, let A = a0a1a2 . . . an−1 be the sequence of bits recorded by
computer A, and let B = b0b1b2 . . . bn−1 be those recorded by computer B.
(For simplicity we assume that A and B have the same length, but it does not
really matter.) An alignment of i means that ai is matched with b0, ai+1 with
b1, . . . and in general ai+k is matched with bk. We define the fit of a given
alignment as the average number of mismatches per bit in the overlapping
portion, that is,

fit(i) =
1

n− i

n−1−i

∑
k=0
|ai+k − bk|.

For example, suppose A and B have 40 bits each, and are given by

A = 1100101101100111100010011000001011111100

B = 0001000100001101101110011101010001001111

With an alignment of, say, 35, A and B overlap by 5 bits, namely, the 11100
at the end of A overlaps with the 00010 at the beginning of B. Four out of
five of these bits do not match, giving a fit score of 4/5 = 0.8. Note that
the fit score will always be between 0 and 1. A fit score of 0 means that the
sequences match perfectly; a fit score of 1 means that the overlapping por-
tions are exactly inverted from each other, with the first having a 0 whenever
the second has a 1, and vice versa. On average, we would expect that two
randomly chosen sequences of bits will have a fit score of 0.5 relative to each
other.

Homework 6 3 Due: 4:00pm, Friday, March 10

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

The absolute best fit between A and B is at alignments 38 and 39: namely,
those alignments give a fit of zero, since the two 0 bits at the end of A match
perfectly with the two 0 bits at the beginning of B. However, there is a 50%
chance that the sequences will align perfectly with an overlap of one, and this
is unlikely to actually be the correct alignment. So we ignore alignments near
the end like this (specifically, let’s say that we will ignore any alignment with
10 or fewer bits of overlap). Making a graph with alignment on the x-axis
and fit on the y-axis, an alignment of 17 clearly jumps out as giving the best
(lowest) fit value:

17 403020100
0

1

Writing A and B underneath each other using this alignment, we can see
that they do indeed appear to match very well, with only a few differences;
the average number of disagreements per bit is very low:

1100101101100111100010011000001011111100
0001000100001101101110011101010001001111

On the other hand, if we pick another alignment (say, 12):

1100101101100111100010011000001011111100
0001000100001101101110011101010001001111

we can see that A and B do not match very well; the average number of
disagreements per bit is relatively high.

Question 5. Before even thinking about designing an algorithm, you decide
to do some quick back-of-the-envelope calculations. You note the following
facts:

• Each part of the message is about 1GB in length, that is, each part contains
n ≈ 233 bits.

• Your computer can perform about 1 billion operations per second.

You then imagine using algorithms with various running times and calculate
how long they would take to run.

(a) If your algorithm required exactly n2 operations, approximately how
long will it take to run? Express your answer in appropriate, human-
comprehensible units (e.g. say “10 hours”, not “36000 seconds”).

(b) If your algorithm required exactly n log2 n operations, approximately how
long will it take to run?

Homework 6 4 Due: 4:00pm, Friday, March 10

CSCI 280: Algorithms – Spring 2017 Brent Yorgey

6a

6b

Question 6. Design and analyze an efficient algorithm which, given two
length-n sequences of bits, finds the alignment with the best fit value. Note
that “design and analyze” means to describe the algorithm, prove/justify why
it is correct, and analyze its asymptotic running time.

Homework 6 5 Due: 4:00pm, Friday, March 10

Remember that using the FFT, we can multiply two degree-n polynomials in O(n log n).
Try using the polynomials A(x) = a_n{-}1 + a_n-2 x + ... and B(x) = b_0 + b_1 x + ...

