A potpourri of pleasing problems

Question 1. Let $f : \mathbb{N} \to \text{Bool}$ be a function that takes natural numbers as inputs and yields Boolean values as output. We say f is *monotone* if there is some $k \in \mathbb{N}$ such that f(n) = False for all n < k and f(n) = True for all $n \ge k$. In other words, f starts out returning False, but as n gets bigger there comes some point when f switches to returning True (and never switches back). For example, the function g(n) = n > 100, which reports whether its input is greater than 100, is monotone: it outputs False for all n < 101and then switches to True for all $n \ge 101$. As another example, consider the function h(n) which reports whether or not $n \log_2 n > 3.6 \times 10^{13}$. Clearly h is monotone, since if some n satisfies this inequality then everything larger than n will also satisfy it; but unlike g, the critical value of n where h will switch from False to True is not a priori obvious.

Using pseudocode, describe an efficient algorithm which, given a monotone function f, returns the critical value $k \in \mathbb{N}$ at which f switches from False to True. What is the running time of your algorithm in terms of k?

Question 2. Consider the problem of making change for *C* cents using the fewest possible number of coins. Assume that each coin's value is an integer.

- (a) Describe a greedy algorithm to make change for C cents using US quarters, dimes, nickels, and pennies. Prove that your algorithm yields an optimal solution.
- (b) Give a set of coin denominations for which the greedy algorithm does not yield an optimal solution. Your set should include a penny so that there is a solution for every value of *C*.
- (c) Design and analyze an algorithm to make change using the fewest number of coins that works for any set of coins. That is, as input your algorithm should take
 - *n*, the number of different coin types;
 - a list c_1, c_2, \ldots, c_n giving the values of the different coins (if you like, you may assume they are already sorted from smallest to largest); and
 - the number of cents *C* we would like to make change for.

As output your algorithm should either report that it is not possible to make the required amount *C* using the given coins, or give a set of coins which add up to *C* such that the number of coins in the set is as small as possible. For example, if given as input $c_1 = 1$, $c_2 = 5$, $c_3 = 20$ and the target value C = 47, your algorithm should output the set $\{20, 20, 5, 1, 1\}$. Note that we assume there is an unlimited supply of coins of each type. Be sure to justify your algorithm's correctness and analyze its time complexity.

Question 3. Describe how to implement a queue using two stacks and $\Theta(1)$ additional memory, so that the amortized time for any enqueue or dequeue operation is $\Theta(1)$. The *only* access you have to the stacks is through the standard methods PUSH and POP. You may assume that PUSH and POP take $\Theta(1)$ time in the worst case.

Question 4. Let G = (V, E) be a directed, weighted graph with positive edge weights, and let $s, t \in V$. Design and analyze an efficient algorithm to either find the length of the **longest** path from *s* to *t* in *G*, or report that paths from *s* to *t* can be arbitrarily long (because there is a cycle somewhere in the middle).

