
CSCI 280—Algorithms Spring 2017

Exam 2—D&C, DP, network flow, amortized analysis

There are four problems on the exam; you can pick any three to com-
plete.

In preparing your solutions to the exam, you are allowed to use any
sources including your textbook, other students and professors, previous
homeworks and solutions, or any sources on the Internet. You may ask me for
feedback on potential solutions, but I will not give you any hints. Of course, I
am also happy to answer general questions, go over homework problems, or
answer clarifying questions about exam problems.

The exam will take place in class on Friday, April 7 (MC Reynolds 317,
8:10-9:00am). You are not allowed to bring any notes, textbooks, calcula-
tors, or any other resources with you to the exam. Bring only something to
write with; I will provide a fresh copy of the exam, paper for writing your
solutions, and scratch paper.

As usual, to “design and analyze” an algorithm means to (a) describe the
algorithm, (b) prove/justify its correctness, and (c) analyze its asymptotic
running time. Full credit will only be given for the most efficient possible
algorithms. Algorithms must be clearly explained (using pseudocode if ap-
propriate) in sufficient detail that another student could take your description
and turn it into working code. You may freely cite any theorems proved in
class (without proof), or use algorithms covered in class as subroutines.

Midterm 2 1 8:10-9am, Friday, 7 April, 2017



CSCI 280—Algorithms Spring 2017

Pick any three of the following questions.

Question 1. Given an array A[0 . . . n − 1] of integers, a wobbly pair is a
pair of integers in the array that are “out of order”: that is, where i < j but
A[i] > A[j]. For example, the array

A = [2,−1, 17, 10, 3, 8]

has 6 wobbly pairs, namely, (2,−1), (17, 10), (17, 3), (17, 8), (10, 3), and
(10, 8). Put another way, if you imagine each number “looking” down the
array to its right, there is a wobbly pair each time a number can “see” another
number which is smaller than it. The number of wobbly pairs is in some
sense a measure of how far away A is from being sorted; in fact, the number
of wobbly pairs is exactly the minimum number of adjacent swaps needed to
sort the array, and a sorted array has zero wobbly pairs. In the example, we
could first swap 17 and 10, then 17 and 3, then 17 and 8, taking three swaps
to move 17 to the end; then two more swaps would be needed to move 10
past 3 and 8; then one last swap would put 2 and −1 in the correct order, for a
total of six adjacent swaps.

Design and analyze an efficient algorithm to compute the number of
wobbly pairs in a given array.

Question 2. You are given a set of n widgets and a positive integer G. Each
widget also has a froob fi (a positive real number) and a grump gi (a positive
integer). As you can tell from their names, froob is good and grump is bad.
Your goal is to pick a subset of the widgets such that their total froob is as big
as possible (yay!), but subject to the constraint that their total grump must be
≤ G (you can only deal with so much grump).

Design and analyze an algorithm to find an optimal subset, given as input
the number of widgets n, the maximum grump G, and two size-n arrays con-
taining the froob and grump values for the widgets. Be sure your algorithm
finds not just the maximum possible froob but an actual subset of widgets
which has that total froob.

Question 3 is courtesy of Jeff Erickson,
http://jeffe.cs.illinois.edu/
teaching/algorithms/hwex/f06/
final.pdf.

Question 3. Suppose you are running a web site that is visited by the same
set of people every day. Each visitor claims membership in one or more
demographic groups; for example, a visitor might describe himself as male,
31–40 years old, a resident of Arkansas, an academic, a blogger, and a fan of
extreme downhill snowmobile freestyle jumping. Your site is supported by
advertisers. Each advertiser has told you which demographic groups may see
its ads and how many of its ads you must show each day. Altogether, there
are n visitors, k demographic groups, and m advertisers.

Design and analyze an efficient algorithm to determine, given all the data
described in the previous paragraph, whether you can show each visitor ex-
actly one ad per day, so that every advertiser has (at least) its desired number
of ads displayed in total, and every ad is shown to someone in an appropriate
demographic group.

Midterm 2 2 8:10-9am, Friday, 7 April, 2017

http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f06/final.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f06/final.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f06/final.pdf


CSCI 280—Algorithms Spring 2017

Question 4 is also courtesy of Jeff Erickson,
http://jeffe.cs.illinois.edu/
teaching/algorithms/hwex/f13/
midterm2.pdf.

Question 4. Suppose you are maintaining a circular array X[0 . . . n− 1] of
counters, each taking a value from the set {0, 1, 2}. The following algorithm
increments one of the counters; if the counter would overflow, the algorithm
instead resets it to 0 and recursively increments its two neighbors.

Algorithm 1: INCREMENT(i)
1: if X[i] < 2 then
2: X[i]← X[i] + 1
3: else
4: X[i]← 0
5: INCREMENT((i− 1) mod n)
6: INCREMENT((i + 1) mod n)
7: end if

For example, if X = [0, 0, 0] then INCREMENT(1) results in X =

[0, 1, 0]; if X = [0, 2, 0] then INCREMENT(1) results in X = [1, 0, 1].

(a) Suppose n = 5 and X = [2, 2, 2, 2, 2]. What does X contain after we call
INCREMENT(3)? (You do not need to show any work or intermediate
steps, just the final contents of X.)

(b) Suppose all counters are initially 0. Prove that INCREMENT runs in
Θ(1) amortized time. Assume as the cost model that changing any X[i]
costs 1 unit.

Midterm 2 3 8:10-9am, Friday, 7 April, 2017

http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/hwex/f13/midterm2.pdf

