Model 1: Big-O and Big- Ω

Critical Thinking Questions I

1 Based on the Venn diagram in the model, say whether each function is $O(n^2)$, $\Omega(n^2)$, or both.

Learning objective: Students will describe asymptotic behavior of functions using big-O, big- Θ , and big- Ω notation.

- (a) $2\sqrt{n}$
- (b) *n*³
- (c) $2n^2 + n + 1$
- (d) 2^{*n*}

Consider the functions

$$f(n) = (n^2 + 2)/n,$$

 $g(n) = n^2/2 - n,$ and
 $h(n) = n^3/1000$

for which graphs are shown in the model.

- 2 On each of the following intervals, list the functions *f*, *g*, and *h* from largest to smallest.
- (a) $n \in [2, 4]$
- (b) $n \in [5, 30]$
- (c) $n \in [35, 450]$
- 3 Which function is largest, and which the smallest, at n = 600?
- 4 Does this relative order continue for all $n \ge 600$, or do the functions ever change places again? Justify your answer.

5 How do you think your answers to the previous questions relate to whether each of *f*, *g*, and *h* is $O(n^2)$, $\Omega(n^2)$, or both?

Say whether you think each of the following statements is true or false. Give a short justification for each answer.

- 6 If f(n) is $O(n^2)$, then it has n^2 in its definition.
- 7 If f(n) has n^2 in its definition, then f(n) is $O(n^2)$.
- 8 If f(n) is both $O(n^2)$ and $\Omega(n^2)$, then it has n^2 in its definition.
- 9 If $f(n) \le n^2$ for all $n \ge 0$, then f(n) is $O(n^2)$.
- 10 If f(n) is $O(n^2)$, then $f(n) \le n^2$ for all $n \ge 0$.
- 11 If $f(n) \le n^2$ for all *n* that are sufficiently large, then f(n) is $O(n^2)$.
- 12 If f(n) is $O(n^2)$ and g(n) is $\Omega(n^2)$, then $f(n) \le g(n)$ for all $n \ge 0$.
- 13 Every function f(n) is either $O(n^2)$ or $\Omega(n^2)$ (or both).

14 Using one or more complete English sentences and appropriate mathematical formalism, propose a correct definition of $O(n^2)$.

 $\ensuremath{\mathbb{C}}$ 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Critical Thinking Questions II

- 15 In what way(s) do you think the definition of $\Omega(n^2)$ is similar to that of $O(n^2)$?
- 16 In what way(s) do you think it is different?
- 17 Using complete English sentences, propose a definition for $\Omega(n^2)$.
- 18 If a function is both $O(n^2)$ and $\Omega(n^2)$, we say it is $\Theta(n^2)$. For each of the below functions, say whether you think it is $\Theta(n^2)$. Justify your answers.
 - (a) $3n^2 + 2n 10$

(b)
$$\frac{n^3-5}{n}$$

(c)
$$\frac{n^3 - 5}{\sqrt{n}}$$

- (d) (n+1)(n-2)
- (e) $n + n\sqrt{n}$
- 19 Do you think $n^2 \cdot \log_2 n$ is $O(n^2)$, $\Omega(n^2)$, or both? Why?

Model 2: Definitions

Definition 1 (Big-O). T(n) is O(g(n)) if there exist a real number c > 0 and an integer $n_0 \ge 0$ such that for all $n \ge n_0$,

 $T(n) \le c \cdot g(n).$

Definition 2 (Big-Omega). T(n) is $\Omega(g(n))$ if there exist a real number c > 0 and an integer $n_0 \ge 0$ such that for all $n \ge n_0$,

$$T(n) \ge c \cdot g(n).$$

Definition 3 (Big-Theta). T(n) is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$.

Sample proof that $n^2 + 2n$ is $\Theta(n^2)$:

- First, $n^2 + 2n \le n^2 + 2n^2 = 3n^2$ for $n \ge 1$ (since $n^2 \ge n$ when $n \ge 1$). Hence $n^2 + 2n$ is $O(n^2)$ according to the definition if we pick c = 3 and $n_0 = 1$.
- Next, $n^2 + 2n \ge n^2$ as long as $n \ge 0$. So by picking c = 1 and $n_0 = 0$, we see that $n^2 + 2n$ is also $\Omega(n^2)$.
- 20 Compare our class consensus definition of $O(n^2)$ with the formal definition of O(g(n)) above. List one way in which they are similar, and one way in which they are different.

- 21 Consider the following three more intuitive phrasings. Match each one with its corresponding definition.
 - *T*(*n*) is eventually bounded below by some constant multiple of *g*(*n*).
 - *T*(*n*) is eventually bounded between two constant multiples of *g*(*n*).
 - *T*(*n*) is eventually bounded above by some constant multiple of *g*(*n*).
- 22 Which part of the definitions corresponds to the word "eventually" in Question 21?

- 23 In the sample proof that $n^2 + 2n$ is $O(n^2)$, the given values of *c* and n_0 are not the only values that would work. Given an alternate proof that $n^2 + 2n$ is $O(n^2)$ using different values of *c* and n_0 .
- 24 Prove that f(n) = 20n 1 is $O(n^2)$ by applying the formal definition.
- 25 Prove that $f(n) = n^3/10$ is $\Omega(n^2)$ by applying the formal definition.
- 26 Prove that $f(n) = 3n^2 n + 1$ is $\Theta(n^2)$ by applying the formal definition.

As you probably found when doing questions 23–26, it can be somewhat tedious to directly apply the formal definitions of O, Ω , and Θ . Fortunately, there is often an easier way. Consider again the functions

$$f(n) = (n^2 + 2)/n,$$

 $g(n) = n^2/2 - n,$ and
 $h(n) = n^3/1000.$

27 What is

 $\lim_{n\to\infty}\frac{f(n)}{n^2}?$

28 What is

 $\lim_{n\to\infty}\frac{g(n)}{n^2}?$

29 What is

 $\lim_{n\to\infty}\frac{h(n)}{n^2}?$

30 In general, consider the limit

 $\lim_{n\to\infty} T(n)/g(n).$

Intuitively, what can you say about the long-term behavior of T(n) relative to g(n) if...

- (a) ... the limit exists and is equal to 0? Draw a picture.
- (b) ... the limit exists and is equal to some positive constant *c*? Draw a picture.
- (c) ... the limit does not exist since T(n)/g(n) diverges to $+\infty$? Draw a picture.

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Learning objective: Students will determine the asymptotic behavior of functions using limit theorems.

31 Fill in the statements of the following theorems:

Theorem 4. If

$$0 \leq \lim_{n \to \infty} \frac{T(n)}{g(n)} < \infty,$$

then T(n)

Theorem 5. If

then T(n) is $\Omega(g(n))$.

Theorem 6. If the limit

 $\lim_{n\to\infty}\frac{T(n)}{g(n)}$

exists and _____, then T(n) is $\Theta(g(n))$.

- 32 When we classify functions according to O, Θ , and Ω , we say we are describing the *asymptotic* behavior of the functions. Why do you think that word is used?
- 33 Describe the asymptotic behavior of

$$f(n) = 2n + \sqrt{3n} + 2$$

using big- Θ notation. Justify your answer.

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

We will not formally prove these, although the proofs are not hard; you might like to try proving them yourself.