
Algorithms Activity 5: Graphs

Model 1: Graphs (review)
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G = (V, E)

V = {α, β, γ, δ, ε, ζ, η, θ}
E = {{α, δ}, {θ, η}, {β, α}, {ζ, δ}, {ε, η}, {γ, α}}

Definition 1. A graph G = (V, E) is a set of vertices V together with a set E of edges, where each
edge consists of a set of two vertices.

Above are shown four example graphs.
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Learning objective: Students will
understand and apply graph terms
edge, vertex, adjacent/neighbor, degree,
leaf, path, connected, connected component,
cycle, cyclic, acyclic, and tree.

For each of the following terms, state its definition, and give one
example from the model and, if appropriate, one non-example from
the model. If no one in your group can remember the definition of a
term, give it your best guess.

1 vertex1 1 Vertices are also called nodes.

2 edge

3 adjacent vertices2 2 Adjacent vertices are also referred to
as neighbors.

4 degree of a vertex

5 leaf

6 path

7 connected vertices (what does it mean for two vertices to be con-
nected?)

8 connected graph (what does it mean for an entire graph to be con-
nected?)

9 disconnected graph

10 connected component
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11 cycle

12 cyclic graph

13 acyclic graph

A few more questions for you to ponder:

14 Suppose we draw an edge from a vertex back to itself. Does the
given definition of a graph allow this? Sometimes it makes sense to allow

these things and sometimes it doesn’t;
you just have to be clear about what
kind of graph you have.

15 Suppose we draw two edges between the same pair of vertices.
Does the given definition of a graph allow this?

16 How many vertices can be in a cycle?

17 The lowercase graph is a tree. The number graph and uppercase
graph are not trees. What do you think is the definition of a tree? Warning—a tree graph is not quite the

same thing as a tree data structure!

18 Is the Greek graph a tree?
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Some proofs about graphs
Learning objective: Students will
write proofs about graphs.Theorem 2 (Trees). Let G = (V, E) be a graph with |V| = n ≥ 1. Any

two of the following imply the third:

1. G is connected.

2. G is acyclic.

3. G has n− 1 edges.

We will take each pair of statements in turn and show that they
imply the third. Fill in the blanks to complete the following proofs!
Note that the size of a blank does not necessarily correspond to the
amount of stuff you should write in it.

Lemma 3. (1), (2) =⇒ (3). That is: let G = (V, E) be a graph with

|V| = n ≥ 1. If

and ,

then .

Proof. Let P(n) denote the statement “Any graph G with n vertices

which is and

must have .”
We wish to show that P(n) holds for all n ≥ 1.

The proof is by .

• The base case is when .

In this case, G must be

which indeed .

• In the inductive case, suppose P(k) holds for some k ≥ 1. That is,

suppose that any graph with vertices

which is

must have .

Then we wish to show .
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So, let G be a graph with vertices which is

and .
We claim that G must have some vertex which is a leaf, that is, a

vertex of degree :

– G cannot have any vertices of degree

because .

– It also cannot be the case that every vertex of G has degree ≥ .

If they did, then we could find a by starting at any

vertex and walking along edges randomly until ;

we would never get stuck because .

However, this is impossible because we assumed .

Hence, G must have some vertex which .
If we delete this vertex along with the edge adjacent to it, it results

in a graph G′ with only vertices;

we note that G′ is still

because

and also

because .
Hence we may apply the inductive hypothesis to conclude that G′

. Adding the deleted vertex and edge

back to G′ shows that G ,
which is what we wanted to show.
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Let’s do one more! (You will do the third on your HW.)

Lemma 4. (2), (3) =⇒ (1), that is,

.

Proof. This proof uses a counting argument: we will show what we
wish to show by counting things in multiple ways.

Let c denote the number of connected components of G. We want

to show that .
Number the components of G from 1 . . . c, and say that component

i has ni vertices. Then

c

∑
i=1

ni =

because .

Each connected component is by definition a graph;

each component must also be
since we assumed that G is. Hence we may apply Lemma ?? to con-

clude that component i .
Adding these up, the total number of edges in G is

|E| =
c

∑
i=1

=

But we already assumed the number of edges in G is ,

and hence as desired.

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

	Model 1: Graphs (review)
	Some proofs about graphs

