Model 1: Graphs (review)

Definition 1. A graph G = (V, E) is a set of *vertices V* together with a set E of *eages*, where edge consists of a set of two vertices.

Above are shown four example graphs.

For each of the following terms, state its definition, and give one example from the model and, if appropriate, one non-example from the model. If no one in your group can remember the definition of a term, give it your best guess.

1 vertex¹

Learning objective: Students will understand and apply graph terms *edge, vertex, adjacent / neighbor, degree, leaf, path, connected, connected component, cycle, cyclic, acyclic,* and *tree*.

¹ Vertices are also called *nodes*.

2 edge

3 adjacent vertices²

² Adjacent vertices are also referred to as *neighbors*.

4 *degree* of a vertex

5 leaf

6 path

- 7 connected vertices (what does it mean for two vertices to be connected?)
- 8 *connected* graph (what does it mean for an entire graph to be connected?)
- 9 disconnected graph

10 connected component

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

11 cycle

12 *cyclic* graph

13 *acyclic* graph

A few more questions for you to ponder:

14 Suppose we draw an edge from a vertex back to itself. Does the given definition of a graph allow this?

Sometimes it makes sense to allow these things and sometimes it doesn't; you just have to be clear about what kind of graph you have.

- 15 Suppose we draw two edges between the same pair of vertices. Does the given definition of a graph allow this?
- 16 How many vertices can be in a cycle?
- 17 The lowercase graph is a *tree*. The number graph and uppercase graph are not trees. What do you think is the definition of a tree?

Warning—a tree graph is not quite the same thing as a tree data structure!

18 Is the Greek graph a tree?

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Some proofs about graphs

Theorem 2 (Trees). *Let* G = (V, E) *be a graph with* $|V| = n \ge 1$. *Any two of the following imply the third:*

- 1. G is connected.
- 2. G is acyclic.
- 3. *G* has n 1 edges.

We will take each pair of statements in turn and show that they imply the third. Fill in the blanks to complete the following proofs! Note that the size of a blank does not necessarily correspond to the amount of stuff you should write in it.

Lemma 3. (1), (2) \implies (3). That is: let G = (V, E) be a graph with $|V| = n \ge 1.$ If and , then *Proof.* Let P(n) denote the statement "Any graph *G* with *n* vertices which is and must have We wish to show that P(n) holds for all $n \ge 1$. The proof is by . • The base case is when _____. In this case, G must be which indeed • In the inductive case, suppose P(k) holds for some $k \ge 1$. That is, suppose that any graph with vertices which is _____ must have _____. Then we wish to show . \odot \odot

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Learning objective: Students will write proofs about graphs.

So, let <i>G</i> be a graph with	vertices which is
and	
We claim that <i>G</i> must have some vertex whi	ch is a leaf, that is, a
vertex of degree	:
- <i>G</i> cannot have any vertices of degree	
because	
- It also cannot be the case that every vertex	x of G has degree \geq
If they did, then we could find a	by starting at any
vertex and walking along edges randomly	y until;
we would never get stuck because	
However, this is impossible because we as	ssumed
Hence, <i>G</i> must have some vertex which If we delete this vertex along with the edge a	adjacent to it, it results
in a graph G' with only	vertices;
we note that <i>G</i> ′ is still	
because	
and also	
because	
Hence we may apply the inductive hypothes	sis to conclude that G'
Adding the c	leleted vertex and edge
back to <i>G</i> ′ shows that <i>G</i>	/
which is what we wanted to show.	_

 $\ensuremath{\mathbb{C}}$ 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Let's do one more! (You will do the third on your HW.)

Lemma 4. (2), (3) \implies (1), that is, _____

Proof. This proof uses a *counting argument*: we will show what we wish to show by counting things in multiple ways.

Let *c* denote the number of connected components of *G*. We want

to show that

Number the components of *G* from $1 \dots c$, and say that component *i* has n_i vertices. Then

$$\sum_{i=1}^{c} n_i = _$$

because _____.

Each connected component is by definition a graph;

each component must also be _____

since we assumed that G is. Hence we may apply Lemma ?? to con-

clude that component *i*______Adding these up, the total number of edges in *G* is

$$|E| = \sum_{i=1}^{c} \underline{\qquad} = \underline{\qquad}$$

But we already assumed the number of edges in *G* is ,

and hence ______as desired.

•

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.