Algorithms Activity 5: Graphs

Model 1: Graphs (review)

For each of the following terms, state its definition, and give one example from the model and, if appropriate, one non-example from the model. If no one in your group can remember the definition of a term, give it your best guess.

1 vertex ${ }^{1}$

2 edge

3 adjacent vertices ${ }^{2}$

4 degree of a vertex

5 leaf

6 path

7 connected vertices (what does it mean for two vertices to be connected?)

8 connected graph (what does it mean for an entire graph to be connected?)

9 disconnected graph

10 connected component

Learning objective: Students will understand and apply graph terms edge, vertex, adjacent/neighbor, degree, leaf, path, connected, connected component, cycle, cyclic, acyclic, and tree.
${ }^{1}$ Vertices are also called nodes.
${ }^{2}$ Adjacent vertices are also referred to as neighbors.

11 cycle

12 cyclic graph

13 acyclic graph

A few more questions for you to ponder:

14 Suppose we draw an edge from a vertex back to itself. Does the
given definition of a graph allow this?

Sometimes it makes sense to allow these things and sometimes it doesn't; you just have to be clear about what kind of graph you have.

15 Suppose we draw two edges between the same pair of vertices. Does the given definition of a graph allow this?

16 How many vertices can be in a cycle?

17 The lowercase graph is a tree. The number graph and uppercase graph are not trees. What do you think is the definition of a tree?

Warning-a tree graph is not quite the same thing as a tree data structure!

18 Is the Greek graph a tree?

Some proofs about graphs

Learning objective: Students will write proofs about graphs.

Theorem 2 (Trees). Let $G=(V, E)$ be a graph with $|V|=n \geq 1$. Any

1. G is connected.
2. G is acyclic.
3. G has $n-1$ edges.

We will take each pair of statements in turn and show that they imply the third. Fill in the blanks to complete the following proofs! Note that the size of a blank does not necessarily correspond to the amount of stuff you should write in it.

Lemma 3. $(1),(2) \Longrightarrow$ (3). That is: let $G=(V, E)$ be a graph with
$|V|=n \geq 1$. If
and \qquad
then \qquad .

Proof. Let $P(n)$ denote the statement "Any graph G with n vertices
which is \qquad and \qquad
must have \qquad ."

We wish to show that $P(n)$ holds for all $n \geq 1$.

The proof is by \qquad .

- The base case is when \qquad .

In this case, G must be \qquad
which indeed \qquad .

- In the inductive case, suppose $P(k)$ holds for some $k \geq 1$. That is,
suppose that any graph with \qquad vertices
which is \qquad
must have \qquad .

Then we wish to show \qquad .

(c) (1)

© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

So, let G be a graph with \qquad vertices which is and \qquad .
We claim that G must have some vertex which is a leaf, that is, a vertex of degree \qquad :

- G cannot have any vertices of degree \qquad
because \qquad .
- It also cannot be the case that every vertex of G has degree \geq \qquad .

If they did, then we could find a \qquad by starting at any vertex and walking along edges randomly until \qquad ; we would never get stuck because \qquad .

However, this is impossible because we assumed \qquad .

Hence, G must have some vertex which \qquad .
If we delete this vertex along with the edge adjacent to it, it results
in a graph G^{\prime} with only \qquad vertices;
we note that G^{\prime} is still \qquad
because \qquad
and also \qquad
because \qquad .
Hence we may apply the inductive hypothesis to conclude that G^{\prime}
\qquad . Adding the deleted vertex and edge
back to G^{\prime} shows that G \qquad ,
which is what we wanted to show.
© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

Let's do one more! (You will do the third on your HW.)

Lemma 4. $(2),(3) \Longrightarrow(1)$, that is, \qquad

Proof. This proof uses a counting argument: we will show what we wish to show by counting things in multiple ways.

Let c denote the number of connected components of G. We want
to show that \qquad .
Number the components of G from $1 \ldots c$, and say that component i has n_{i} vertices. Then

$$
\sum_{i=1}^{c} n_{i}=
$$

\qquad
because \qquad .

Each connected component is by definition a \qquad graph;
each component must also be \qquad
since we assumed that G is. Hence we may apply Lemma ?? to con-
clude that component i \qquad .
Adding these up, the total number of edges in G is

$$
|E|=\sum_{i=1}^{c} \square=
$$

But we already assumed the number of edges in G is \qquad ,
and hence \qquad as desired.
© 2017 Brent A. Yorgey. This work is licensed under a Creative Commons Attribution 4.0 International License.

