
CSCI 382: Algorithms – Fall 2017 Brent Yorgey

This assignment has several questions that warrant proofs. Try to emulate
the proof style that we have used in class and the proof style that appears in
the text. That is, make sure your reasoning flows logically from one statement
to another. You should edit your proofs to make sure they read well. Abstrac-
tion is crucial. That is, identify and isolate common ideas. Write clearly and
concisely or use LATEX to typeset your solutions.

On homework assignments throughout the semester, hints will be pro-
vided in QR codes in the margin, numbered by their corresponding question.
Some questions may have multiple hints; generally the hints are in order of
hintiness. If you do not have a device capable of reading QR codes, you can
find the hints in the .tex source for this document, linked from the course
webpage.

Start early!

Please do come ask for help when you get stuck!

Have fun!

The Euclidean Algorithm, Again

In class we considered the problem of finding the greatest common divisor of
two positive integers. We explored two ways to compute the GCD:

Method 1 Factor the two numbers into their unique prime factorizations, and
find the biggest subset of primes contained in both; this is the factorization
of the GCD.

Method 2 Run the Euclidean Algorithm.

In this first question, you will consider the difference between these methods.

Question 1.

(a) Use your brain, a calculator, Wolfram Alpha1, and/or some other appropri- 1 http://www.wolframalpha.com/;
try typing factor 170520. You may find
Wolfram Alpha to be a helpful resource for
this class; just remember to cite it when you
use its results.

ate computational system to factor 170520 into its prime factors.

(b) Now factor 522522, and use the results to find gcd(170520, 522522) by
Method 1.

(c) Trace the execution of the Euclidean Algorithm on (170520, 522522).
Compare and contrast the two methods of computing the GCD of these
two numbers.

(d) Now try to factor the number m shown below, using whatever methods
you like (for example, try using Wolfram Alpha). What happens?

m = 308903627938612635213051732991863520976852479109400884338832430641564115236537.

Homework 1 1 Due: 3:00pm, Friday, September 1

http://www.wolframalpha.com/


CSCI 382: Algorithms – Fall 2017 Brent Yorgey

I would be willing to bet some money that you did not succeed in factoring
m—though not a large amount, since there do exist algorithms that can factor
numbers of this size in a matter of hours or even minutes2; but in any case

2 On my computer, https://www.
alpertron.com.ar/ECM.HTM
was able to factor m in 12m13s using a
self-initializing quadratic sieve (SIQS)
algorithm.

factoring a number with, say, four times as many digits as this would re-
quire more like centuries. Factoring is widely believed to be a rather difficult
computational problem.3 3 The security of your bank account proba-

bly depends on it!
(e) Now, suppose I tell you that there are in fact three prime numbers p, q, and

r, such that

m = p · q = 308903627938612635213051732991863520976852479109400884338832430641564115236537

n = p · r = 235051426595377535232357646935740625119338466495681619002059053022377525089111

(this is the same number m from part (a)). Find p, q, and r.

1(e)(f) What does this suggest about the relative efficiency of the two methods for
computing the GCD?

Analyzing the Euclidean Algorithm

From now on, when referring to the Euclidean Algorithm, we will specifi-
cally work with the recursive implementation, GCDR, reproduced for conve-
nience in Figure 1.

GCDR(a,b) =
if b = 0

then a
else GCDR(b, a mod b)

Figure 1: The Euclidean AlgorithmIn addition, when discussing gcd(a, b) from now on we will assume that
a > b. This is not a real restriction, since gcd(a, b) = gcd(b, a), so we
can always switch the arguments if they are in the wrong order, and if the
arguments are the same, gcd(a, a) = a.

Recall that the Fibonacci numbers Fn are defined as follows: You might also occasionally see a definition
with F0 = F1 = 1, but there are very good
reasons for preferring the definition with
F0 = 0. For example, with this definition
we have nice properties such as m | n
iff Fm | Fn, and, if we extend to negative
Fibonacci numbers in the obvious way,
F−n = (−1)n+1Fn.

F0 = 0

F1 = 1

Fn+2 = Fn+1 + Fn

That is, the first two Fibonacci numbers are 0, 1, and then each subse-
quent Fibonacci number is the sum of the previous two, so the first few are
0, 1, 1, 2, 3, 5, 8, 13, . . .

Question 2.

(a) Compute F9 and F10, and trace the execution of the Euclidean Algorithm
to compute gcd(F10, F9). What happens?

(b) Prove by induction on n that gcd(Fn+1, Fn) = 1 for all n ≥ 0. In fact, it turns out that something much
stronger is true: gcd(Fm, Fn) = Fgcd(m,n)!
Proving this would be well outside the
scope of this assignment, but you might be
interested to explore it later.

(c) Explain why your proof also shows that the Euclidean Algorithm requires
n recursive steps to compute gcd(Fn+1, Fn) = 1.

Question 3. In fact, more is true: consecutive Fibonacci numbers (Fn+1, Fn)

are in some sense a worst-case input for the Euclidean Algorithm: they are
the smallest numbers for which the Euclidean Algorithm needs n steps.

Homework 1 2 Due: 3:00pm, Friday, September 1

https://www.alpertron.com.ar/ECM.HTM
https://www.alpertron.com.ar/ECM.HTM
Implement GCD yourself, or figure out how to call it in your favorite programming language.


CSCI 382: Algorithms – Fall 2017 Brent Yorgey

3(a)
(a) Prove by induction on n: if a > b and the Euclidean Algorithm requires n

steps to compute gcd(a, b), then a ≥ Fn+1 and b ≥ Fn.

(b) Conclude that if a ≤ Fn+1 then the Euclidean Algorithm requires at most
n steps.

Question 4. How big are Fibonacci numbers? Let’s find out:

(a) Solve x2 = x + 1 for x and call the positive solution ϕ (this is often
known as the golden ratio) and the negative solution ϕ̂.

(b) Prove by induction on n that Fn = 1√
5
(ϕn − ϕ̂n). Hints for (b): don’t forget that you need two

base cases; show that ϕ − ϕ̂ =
√

5, and
remember that ϕ2 = ϕ + 1 and similarly for
ϕ̂.

(c) Conclude that Fn ≈ ϕn/
√

5.

Hint for (c): what can you say about ϕ̂n as n
gets large?

Question 5. Suppose we want to run the Euclidean Algorithm to compute
gcd(a, b), again assuming a > b. Let Fn+1 be the smallest Fibonacci number
which is greater than or equal to a. Then we know from question 3 that the
Euclidean Algorithm takes at most n steps to run, with the worst case being
when a = Fn+1. We want to figure out how n relates to a.

Starting from a = Fn+1 (since this is the worst case), and using the result
from the previous question, solve (approximately) for n in terms of a. Your One (not-so-secret) purpose of this question

is to serve as a review of logarithms,
which will feature prominently in this
course. Please come ask if you need help
remembering how to work with logarithms
to solve this question!

final answer should be of the form

n ≈ k1 log10 a + k2

for suitable constants k1 and k2; you should give k1 and k2 in approximate,
decimal form. Conclude that the Euclidean Algorithm requires, in the worst This is (essentially) known as Lamé’s

Theorem, and was first proved by Gabriel
Lamé in 1844. It was significant in being
one of the first “practical” applications of
the Fibonacci numbers, and one of the first
results in what we would now call the theory
of algorithms.

case, a number of steps proportional to the number of digits in the base-ten
representation of a.

Question 6 (Optional Extra Credit). The jellybean game is a game for
two players. There is a row of n jars, numbered 1 to n from left to right,
each of which starts out containing some number of jellybeans (possibly
zero). We assume that these are magical jars which can hold an unlimited
number of jellybeans, so we don’t have to worry about the jars getting too
full. (Note, however, that the jars cannot hold infinitely many beans—each jar
must always have some finite number of jellybeans in it, but that number can
be as big as we want.) We also assume that there is an unlimited supply of
extra jellybeans (such as a jellybean factory or a magical jellybean-pooping
unicorn).

The players alternate turns. On a player’s turn, she must:

1. Pick a nonempty jar, call it jar k.

2. Remove one jellybean from jar k.

3. Add as many jellybeans as she wants (possibly zero) to each of the jars
1 . . . (k− 1) to the left of her chosen jar.

Homework 1 3 Due: 3:00pm, Friday, September 1

Show that a >= b + a mod b.


CSCI 382: Algorithms – Fall 2017 Brent Yorgey

For example, suppose there are five jars which currently hold

1 3 0 2 6.

One possible valid turn is to pick jar 4 and remove one jellybean from it, then
add 6, 29, and one billion jellybeans to jars 1, 2, and 3 respectively, resulting
in

7 32 109 1 6.

The winner is the player who removes the last jellybean. Put another way,
the loser is the first player who is unable to move because all the jars are
empty.

(a) Prove that the jellybean game always ends eventually. That is, even if the
players conspire to try to make the game last forever, they cannot (as long
as they follow the rules). Of course, they certainly can make the game

take a very, very long time. . .
(b) Describe a winning strategy for the jellybean game.

Question 7. On a scale of 1 to 10, with 1 being “my pet goldfish could do it
in its sleep” and 10 being “who do you think I am, Einstein?”, how difficult
was this assignment? How many hours would you estimate that you spent on
it?

Homework 1 4 Due: 3:00pm, Friday, September 1


	The Euclidean Algorithm, Again
	Analyzing the Euclidean Algorithm

