Question 1 (K\&T 2.2). Suppose you have algorithms with the six running times listed below. (Assume these are the exact number of operations performed as a function of the input size n.) Suppose you have a computer that can perform 10^{10} operations per second, and you need to compute a result in at most an hour of computation. For each of the algorithms, what is the largest input size n for which you would be able to get the result within an hour?

1. n^{2}
2. n^{3}
3. $100 n^{2}$
4. $n \log _{2} n$
5. 2^{n}
6. $2^{2^{n}}$

In addition to O, Θ, and Ω, we will also sometimes use the notation $o(g(n))$ (little-o) to mean that a function is $O(g(n))$ but not $\Theta(g(n))$. So, if $\lim _{n \rightarrow \infty} T(n) / g(n)=0$, then $T(n)$ is $o(g(n))$. Intuitively, if big-O is like "less than or equal to", little-o is like "less than"; if $f(n)$ is $o(g(n))$ then f "grows strictly more slowly than" g.

Question 2 (Some asymptotic properties).
(a) Show that n^{j} is $o\left(n^{k}\right)$ whenever $j<k$.
(b) Prove that $\log _{a} n$ is $\Theta\left(\log _{b} n\right)$ for any positive integer bases $a, b>1$. Conclude that we are justified in writing simply $\Theta(\log n)$ without caring about the base of the logarithm.
(c) Prove that n^{k} is $o\left(b^{n}\right)$ for any positive integer k and any real number $b>1$. For example, n^{295} is $o\left(1.0001^{n}\right)$. In the long run, any polynomial function grows more slowly than any exponential function!

Hint: recall, or look up, the change-of-base formula for logarithms.

Hint: use L'Hôpital's rule k times. Recall that the derivative of b^{n} with respect to n is $b^{n} \ln b$.

Question 3 (K\&T 2.3). Take the following list of functions and arrange them in ascending order of growth rate. That is, if function $g(n)$ immediately follows function $f(n)$ in your list, then it should be the case that $f(n)$ is $O(g(n))$. Please prove your claims.

1. $f_{1}(n)=n^{2.5}$
2. $f_{2}(n)=\sqrt{2 n}$
3. $f_{3}(n)=n+10$
4. $f_{4}(n)=10^{n}$
5. $f_{5}(n)=100^{n}$
6. $f_{6}(n)=n^{2} \log n$

Question 4. Characterize the (best possible) asymptotic behavior of each of the following in terms of n, using big- Θ. Give a short justification for each answer.
(a) $1+2+3+4+\cdots+n$
(b) Average number of array lookups needed to find a given element in a sorted array of length n.
(c) Number of two-element subsets of a set of size n.
(d) $1+2+4+8+\cdots+2^{n}$
(e) Total number of nodes in a balanced binary tree with n leaves.
(f) Number of edges in a graph with n nodes, where every node is connected to every other node.
(g) Number of ways to seat n people around a circular table.
(h) Average number of steps needed to find a given element in a linked list of length n.
(i) Biggest integer that can be represented with n bits.
(j) Worst-case number of swaps needed to sort an array of length n if you are only allowed to swap adjacent elements.
(k) Worst-case number of steps needed to check whether two lists, each containing n integers (not necessarily sorted), have any element in common.
(l) Number of array lookups performed by this Python code:

```
for i in range(0,n):
```

for i in range(0,n):
for j in range (0,i):
for j in range (0,i):
sum += array[i][j]

```
        sum += array[i][j]
```

Please come ask for help if you are unsure about any of these!

(m) Number of addition operations performed by this Java code:

```
for (int i = 0; i < n; i += 3) {
    sum = sum + i;
}
```

(n) Total number of calls to print 1 n performed by this Java code:

```
for (int i = 1; i < n; i *= 2) {
    for (j = 0; j < 20; j++) {
        System.out.println(i + j);
    }
}
```

(o) Total number of calls to print performed by this Python code:

```
def foo(n):
    print n
    if n > 0:
        foo(n-1)
        foo(n-1)
```

Question 5 (K\&T 2.8). You're doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is as follows. You have a ladder with n rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break. We call this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung $n / 4$ or $3 n / 4$ depending on the outcome. But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy. Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks. In this way, you only need a single jar—at the moment it breaks, you have the correct answer-but you may have to drop it n times (rather than $\log n$ times as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you're willing to break more jars. To understand better how this trade-off works at a quantitative level, let's consider how to run this experiment given a fixed "budget" of $k \geq 1$ jars. In other words, you have to determine the correct answer-the highest safe rung-and can use at most k jars in doing so.
(a) Suppose you are given a budget of $k=2$ jars. Describe a strategy for finding the highest safe rung that requires you to drop a jar at most $f(n)$
times, for some function $f(n)$ that grows slower than linearly. (In other words, $f(n)$ should be $o(n)$, that is, $\lim _{n \rightarrow \infty} f(n) / n=0$.)
(b) Now suppose you have a budget of $k>2$ jars, for some given k. Describe a strategy for finding the highest safe rung using at most k jars. If $f_{k}(n)$ denotes the number of times you need to drop a jar according to your strategy, then the functions $f_{1}, f_{2}, f_{3}, \ldots$ should have the property that each grows asymptotically slower than the previous one: $\lim _{n \rightarrow \infty} f_{k}(n) / f_{k-1}(n)=0$ for each k.

Question 6.

(a) On a scale of 1 to 10 , how difficult was this assignment?
(b) How many hours would you estimate that you spent on it?
(c) Which question(s) did you find most difficult? Why?

